Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931429

ABSTRACT

Growing evidence suggests that activators of nuclear factor erythroid-derived 2-like 2 (Nrf2), such as sulforaphane, may represent promising novel pharmacological targets for conditions related to oxidative stress, including depressive disorder. Therefore, we conducted a study to explore the behavioral and biochemical effects of repeated (14 days) sulforaphane (SFN) treatment in the olfactory bulbectomy (OB) animal model of depression. An open field test (OFT), splash test (ST), and spontaneous locomotor activity test (LA) were used to assess changes in depressive-like behavior and the potential antidepressant-like activity of SFN. The OB model induced hyperactivity in mice during the OFT and LA as well as a temporary loss of self-care and motivation in the ST. The repeated administration of SFN (10 mg/kg) effectively reversed these behavioral changes in OB mice across all tests. Additionally, a biochemical analysis revealed that SFN (10 mg/kg) increased the total antioxidant capacity in the frontal cortex and serum of the OB model. Furthermore, SFN (10 mg/kg) significantly enhanced superoxide dismutase activity in the serum of OB mice. Overall, the present study is the first to demonstrate the antidepressant-like effects of repeated SFN (10 mg/kg) treatment in the OB model and indicates that these benefits may be linked to improved oxidative status.

2.
Int Immunopharmacol ; 131: 111789, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38484668

ABSTRACT

Physalin H (PH), a withanolide isolated from Physalisangulata L. has been reported to have anti-inflammatory effect. However, its impact on acute lung injury (ALI) remains unexplored. In this study, we observed that PH significantly alleviated inflammation in LPS-stimulated macrophages by suppressing the release of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and down-regulating the expression of the inflammation-related genes. RNA sequencing analysis revealed a significant up-regulation of the NRF2 pathway by PH. Further investigation elucidated that PH attenuated the ubiquitination of NRF2 by impeding the interaction between NRF2 and KEAP1, thereby facilitating NRF2 nuclear translocation and up-regulating the expression of target genes. Consequently, it regulated redox system and exerted anti-inflammatory effect. Consistently, PH also significantly alleviated pathological damage and inflammation in LPS-induced ALI mice model, which could be reversed by administration of an NRF2 inhibitor. Collectively, these results suggest that PH ameliorates ALI by activating the KEAP1/NRF2 pathway. These findings provide a foundation for further development of pH as a new anti-inflammatory agent for ALI therapy.


Subject(s)
Acute Lung Injury , NF-E2-Related Factor 2 , Secosteroids , Mice , Animals , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Kelch-Like ECH-Associated Protein 1/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Lung/pathology
3.
Eur J Med Chem ; 264: 115998, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38043492

ABSTRACT

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.


Subject(s)
NF-E2-Related Factor 2 , Neurodegenerative Diseases , Humans , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Neurodegenerative Diseases/drug therapy , Oxidative Stress , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use
4.
Antioxidants (Basel) ; 12(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38136182

ABSTRACT

The gas molecules O2, NO, H2S, CO, and CH4, have been increasingly used for medical purposes. Other than these gas molecules, H2 is the smallest diatomic molecule in nature and has become a rising star in gas medicine in the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects on various diseases of the respiratory, cardiovascular, central nervous system, and other systems, but the mechanisms are still unclear and even controversial, especially the mechanism of H2 as a selective radical scavenger. Mitochondria are the main organelles regulating energy metabolism in living organisms as well as the main organelle of reactive oxygen species' generation and targeting. We propose that the protective role of H2 may be mainly dependent on its unique ability to penetrate every aspect of cells to regulate mitochondrial homeostasis by activating the Keap1-Nrf2 phase II antioxidant system rather than its direct free radical scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of H2 as a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models. In addition, we wish to provide a more rational theoretical support for the medical applications of hydrogen.

5.
Bioorg Med Chem Lett ; 95: 129468, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37689216

ABSTRACT

One effective strategy for treating atherosclerosis is to inhibit the injury of vascular endothelial cells (VECs) induced by oxidized low-density lipoprotein (oxLDL) and high glucose (HG). This study synthesized and evaluated a series of novel Nrf2 activators derived from the marine natural product phidianidine for their ability to protect human umbilical VECs against oxLDL- and HG-induced injury. The results of in vitro bioassays demonstrated that compound D-36 was the most promising Nrf2 activator, effectively inhibiting the apoptosis of HUVECs induced by oxLDL and HG. Furthermore, Nrf2 knockdown experiments confirmed that compound D-36 protected against oxLDL- and HG-induced apoptosis in HUVECs by activating the Nrf2 pathway. These findings provide important insights into a new chemotype of marine-derived Nrf2 activators that could potentially be optimized to develop effective anti-atherosclerosis agents.

6.
Eur J Med Chem ; 256: 115433, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37187090

ABSTRACT

Many studies have reported that chalcone-based compounds exhibit biological activities such as anticancer, antioxidant, anti-inflammatory and neuroprotective effects. Among the published chalcone derivatives, (E)-1-(3-methoxypyridin-2-yl)-3-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (VEDA-1209), which is currently undergoing preclinical study, was selected as a starting compound for the development of new nuclear factor erythroid 2-related factor 2 (Nrf2) activators. Based on our previous knowledge, we attempted to redesign and synthesize VEDA-1209 derivatives by introducing the pyridine ring and sulfone moiety to ameliorate its Nrf2 efficacy and drug-like properties. Among the synthesized compounds, (E)-3-chloro-2-(2-((3-methoxypyridin-2-yl)sulfonyl)vinyl) pyridine (10e) was found to have approximately 16-folds higher Nrf2 activating effects than VEDA-1209 (10e: EC50 = 37.9 nM vs VEDA-1209: EC50 = 625 nM) in functional cell-based assay. In addition, 10e effectively improved drug-like properties such as CYP inhibition probability and metabolic stability. Finally, 10e demonstrated excellent antioxidant and anti-inflammatory effects in BV-2 microglial cells and significantly restored spatial memory deficits in lipopolysaccharide (LPS)-induced neuroinflammatory mouse models.


Subject(s)
Chalcone , Chalcones , Mice , Animals , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents/pharmacology , Sulfones/pharmacology , Chalcone/pharmacology , Pyridines , Lipopolysaccharides/pharmacology
7.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978941

ABSTRACT

The low-level antioxidant activity of pancreatic islets causes type 1 diabetes due to oxidative stress, which is also the cause of failure in the pancreatic islets' isolation and cell transplantation. In our previous study, pteryxin was found to be a natural product as a nuclear factor-erythroid-2-related factor (Nrf2) activator. This study focused on elucidation that the potentiality of pteryxin can activate the antioxidant enzymes, even under oxidative stress, by hydrogen peroxide (H2O2). Pteryxin treated with mouse insulinoma MIN6 cells was enhanced the antioxidant gene expressions in the ARE (antioxidant response element) region for HO-1 (Heme Oxygenase-1), GCLC (Glutamate-cysteine ligase catalytic subunit), SOD1 (Super Oxide dismutase1), and Trxr1 (Thioredoxin reductase1), and those enzymes were also expressed during the nuclei transference of cytoplasmic Nrf2. In fact, the cells exposed to H2O2 concentrations of a half-cell lethal in the presence of pteryxin were then induced main antioxidant enzymes, HO-1, GCLC, and Trxr1 in the ARE region. The increased glutathione (GSH) levels associated with the GCLC expression also suggested to be cytoprotective against oxidative stress by activating the redox-metabolizing enzymes involving their increased antioxidant activity in the cells. In addition, Akt is a modulator for Nrf2, which may be responsible for the Nrf2 activation. These results allowed us to consider whether pteryxin or its synthesized congeners, an Nrf2 activator, is a potential preservative agent against islet isolation during cell transplantation.

8.
Expert Opin Investig Drugs ; 32(1): 5-16, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36708320

ABSTRACT

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED: Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION: The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.


Subject(s)
Friedreich Ataxia , Triterpenes , United States , Humans , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , NF-E2-Related Factor 2/therapeutic use
10.
Front Pharmacol ; 13: 1011184, 2022.
Article in English | MEDLINE | ID: mdl-36467029

ABSTRACT

Anatabine, an alkaloid present in plants of the So lanaceae family (including tobacco and eggplant), has been shown to ameliorate chronic inflammatory conditions in mouse models, such as Alzheimer's disease, Hashimoto's thyroiditis, multiple sclerosis, and intestinal inflammation. However, the mechanisms of action of anatabine remain unclear. To understand the impact of anatabine on cellular systems and identify the molecular pathways that are perturbed, we designed a study to examine the concentration-dependent effects of anatabine on various cell types by using a systems pharmacology approach. The resulting dataset, consisting of measurements of various omics data types at different time points, was analyzed by using multiple computational techniques. To identify concentration-dependent activated pathways, we performed linear modeling followed by gene set enrichment. To predict the functional partners of anatabine and the involved pathways, we harnessed the LINCS L1000 dataset's wealth of information and implemented integer linear programming on directed graphs, respectively. Finally, we experimentally verified our key computational predictions. Using an appropriate luciferase reporter cell system, we were able to demonstrate that anatabine treatment results in NRF2 (nuclear factor-erythroid factor 2-related factor 2) translocation, and our systematic phosphoproteomic assays showed that anatabine treatment results in activation of MAPK signaling. While there are certain areas to be explored in deciphering the exact anti-inflammatory mechanisms of action of anatabine and other NRF2 activators, we believe that anatabine constitutes an interesting molecule for its therapeutic potential in NRF2-related diseases.

11.
Mar Drugs ; 20(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36135764

ABSTRACT

Four undescribed phenolic compounds, namely asperpropanols A-D (1-4), along with two known congeners 5 and 6, were isolated from Aspergillus puniceus A2, a deep-sea-derived fungus. The gross structures of the compounds were established by detailed analyses of the HRESIMS and NMR data, and their absolute configurations were resolved by modified Mosher's method and calculations of ECD data. Compounds 1-6 were found to have excellent anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW264.7 cells at 20 µM, evidenced by the reduced nitric oxide (NO), tumor necrosis factor α, and interleukin 6 production. Among them, 5 and 6 showed inhibitory effects on NO production comparable with the positive control (BAY11-7083 at 10 µM). Additionally, the LPS-induced mRNA expressions of inducible nitric oxide synthase and cyclooxygenase-2 were also decreased. Interestingly, mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was downregulated by LPS and recovered by 1-6, suggesting a vital role of Nrf2 in their effect. We further found that pharmacological inhibition of Nrf2 by ML385 largely abrogated the effects of 1-6 on RAW264.7 cells. Therefore, 1-6 may share a common anti-inflammatory mechanism via Nrf2 upregulation and activation.


Subject(s)
Lipopolysaccharides , NF-E2-Related Factor 2 , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Aspergillus , Cyclooxygenase 2/metabolism , Fungi/chemistry , Heme Oxygenase-1/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phenols/pharmacology , RNA, Messenger , Tumor Necrosis Factor-alpha/metabolism
12.
J Enzyme Inhib Med Chem ; 37(1): 178-188, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894983

ABSTRACT

Diabetic nephropathy (DN) is one of the severe microvascular complications of diabetes mellitus. Oxidative stress resulting from aberrant metabolism of glucose mediates renal inflammation and fibrosis in the progression of DN. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 will give a promising therapy for DN. To discover novel Nrf2 activators, we have investigated caffeoylisocitric acid using mesangial cells under high glucose. The results showed at 10 µM, caffeoylisocitric acid significantly inhibited the self-limited proliferation of mesangial cells induced by high glucose. Further assessments have disclosed caffeoylisocitric acid mitigated oxidative stress, inflammation and accumulation of extracellular matrix resulting from high glucose via inactivating MAPK signalling. Meanwhile activation of Nrf2 was observed and involved in these effects through the interaction between Keap1 and caffeoylisocitric acid to disrupt Keap1-Nrf2 complex. Therefore, caffeoylisocitric acid is a promising Nrf2 activator targeting DN.


Subject(s)
Caffeic Acids/pharmacology , Diabetic Nephropathies/drug therapy , Drug Discovery , Glucose/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Mesangial Cells/drug effects , NF-E2-Related Factor 2/metabolism , Caffeic Acids/chemistry , Cells, Cultured , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Dose-Response Relationship, Drug , Extracellular Matrix/drug effects , Glucose/metabolism , Humans , Hypoglycemic Agents/chemistry , Mesangial Cells/metabolism , Molecular Structure , Oxidative Stress/drug effects , Structure-Activity Relationship
13.
J Agric Food Chem ; 69(36): 10606-10616, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34482683

ABSTRACT

We previously identified peptides derived from round scad as potential Nrf2 activators. However, the neuroprotection of these peptides is still unclear. In this study, we aimed to investigate the neuroprotective effect of WCPFSRSF against glutamate-induced neurotoxicity, and the memory-improving effects of WCPFSRSF in mice were also explored. Results showed that WCPFSRSF ameliorated oxidative stress by improving the activities of antioxidant enzymes and promoting the Nrf2-mediated endogenous defense system. Moreover, there is an interaction between the up-regulation of Nrf2 and the down-regulation of NFκB induced by the peptide, which was related to the generation of reactive oxygen species (ROS) and could be abolished by the Akt inhibitor LY294002. Further analysis demonstrated that WCPFSRSF may act as a radical scavenger and Nrf2 activator. The antioxidant and anti-inflammatory effects might be related to the Cys and Trp in WCPFSRSF. Moreover, WCPFSRSF could improve spatial memory impairment in sleep-deprived mice. Thus, this work provided evidence for WCPFSRSF as a potential candidate against neurotoxicity and memory deficits.


Subject(s)
NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neuroprotective Agents , Animals , Antioxidants/pharmacology , Mice , NF-E2-Related Factor 2/genetics , Neuroprotection , Neuroprotective Agents/pharmacology , Oxidative Stress , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species , Signal Transduction
14.
Eur J Med Chem ; 212: 113103, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33387904

ABSTRACT

The Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a pivotal role in the cellular defense system against oxidative stress by inducing antioxidant and anti-inflammatory effects. We previously developed Nrf2 activators that potentially protect the death of dopaminergic (DAergic) neuronal cells against oxidative stress in Parkinson's disease (PD). In this study, we designed and synthesized a class of halogenated vinyl sulfones by inserting halogens and pyridine to maximize Nrf2 activation efficacy. Among the synthesized compounds, (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine (9d) significantly exhibited potent Nrf2 activating efficacy (9d: EC50 = 26 nM) at least 10-fold compared with the previous developed compounds (1 and 2). Furthermore, treating with 9d remarkably increased Nrf2 nuclear translocation and Nrf2 protein levels in microglial BV-2 cells. 9d was shown to induce the expression of antioxidant response genes HO-1, GCLC, GCLM, and SOD-1 at both the mRNA and protein levels and suppress proinflammatory cytokines and enzymes. Also, 9d remarkably protected DAergic neurons and restored the PD-associated motor dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model.


Subject(s)
Drug Development , NF-E2-Related Factor 2/metabolism , Parkinson Disease/drug therapy , Sulfones/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Halogenation , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Parkinson Disease/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry
15.
Can J Physiol Pharmacol ; 99(3): 332-347, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32721224

ABSTRACT

Hepatic encephalopathy depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. Hyperammonemia, inflammatory injury, and oxidative stress are the main predisposing factors for the direct and indirect changes in cerebral metabolism causing encephalopathy. The aim of this study was to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg, p.o.) and l-carnosine (CAR; 200 mg/kg, p.o.) on hepatic encephalopathy that was induced by thioacetamide (TAA; 100 mg/kg, i.p.) administered three times weekly for six weeks. Behavioral changes, biochemical parameters, histopathological analysis, and immunohistochemical and ultrastructural studies were conducted 24 h after the last treatment. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by reduced locomotor activity and decline in motor skill performance, as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes and serum and brain levels of ammonia. In addition, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines, and cleaved caspase-3 expression. Furthermore, they succeeded in activating nuclear erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase-1 (HO-1) activity and ameliorating markers of hepatic encephalopathy, including hepatic necrosis and brain astrocyte swelling. This study shows that combining AG with CAR exerted a new intervention for hepatic and brain damage in hepatic encephalopathy due to their complementary antioxidant, anti-inflammatory effects and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.


Subject(s)
Carnosine/therapeutic use , Guanidines/therapeutic use , Hepatic Encephalopathy/prevention & control , Thioacetamide , Ammonia/metabolism , Animals , Behavior, Animal , Brain/pathology , Brain Chemistry/drug effects , Drug Synergism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/psychology , Liver/pathology , Liver Function Tests , Male , Motor Activity/drug effects , Motor Skills/drug effects , Rats , Rats, Wistar
16.
Front Psychiatry ; 11: 561998, 2020.
Article in English | MEDLINE | ID: mdl-33329102

ABSTRACT

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with limited available treatments and diverse causes. In ASD patients, numerous researches demonstrated various alterations in inflammation/immune, oxidative stress, and mitochondrial dysfunction, and these alterations could be regulated by Nrf2. Hence, we aimed to systematically review the current evidence about the effects of Nrf2 activator supplementation on ASD objects from in vitro studies, animal studies, and clinical studies. Relevant articles were retrieved through searching for the Cochrane Library, PubMed, Web of Science, Scope, Embase, and CNKI databases (through September 23, 2020). Ultimately, we identified 22 preclinical studies, one cell culture study, and seven clinical studies, covering a total of five Nrf2 activators. For each Nrf2 activator, we focused on its definition, potential therapeutic mechanisms, latest research progress, research limitations, and future development directions. Our systematic review provided suggestive evidence that Nrf2 activators have a potentially beneficial role in improving autism-like behaviors and abnormal molecular alterations through oxidant stress, inflammation, and mitochondrial dysfunction. These dietary phytochemicals are considered to be relatively safer and effective for ASD treatment. However, there are few clinical studies to support the Nrf2 activators as dietary phytochemicals in ASD, even though several preclinical studies. Therefore, caution should be warranted in attempting to extrapolate their effects in human studies, and better design and more rigorous research are required before they can be determined as a therapeutic option.

17.
Bioorg Chem ; 105: 104434, 2020 12.
Article in English | MEDLINE | ID: mdl-33161250

ABSTRACT

Natural products with antioxidant and anti-inflammatory properties are important sources of therapeutic agents. The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is a well-known defense system against oxidative stress. In this study, a panel of extracts of plants, fungi, and bacteria were screened for Nrf2 activation in a cell-based assay and a crude extract of cultured marine Streptomyces sp. YP127 was found to activate Nrf2. Chemical investigation of the extracts led to isolation of a series of napyradiomycins that activate Nrf2. Among them, napyradiomycin, 16Z-19-hydroxynapyradiomycin A1 (1) exhibited the highest Nrf2-activating efficacy. Compound 1 was further confirmed to induce both mRNA and protein levels of Nrf2-dependent antioxidant enzyme genes in BV-2 microglial cells and suppress inflammatory mediators and intracellular reactive oxygen species. Our findings confirm the antioxidant and anti-inflammatory properties of compound 1, making it a promising therapeutic natural compound for various diseases associated with oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Streptomyces/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Naphthoquinones/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Bioorg Med Chem ; 28(24): 115833, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33166928

ABSTRACT

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. High glucose has resulted in oxidative stress and following renal fibrosis as the crucial nodes of this disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating transcription of many antioxidant genes and suppressing synthesis of extracellular matrix. To discover Nrf2 activators targeting DN, we have evaluated polypodiside using cell-based assays. The results showed polypodiside inhibited the high glucose-induced self-limited proliferation of glomerular meangial cells. Activation of Nrf2 and enhanced transcription to antioxidant response elements were observed in the presence of polypodiside. Oxidative stress and accumulation of extracellular matrix induced by high glucose in glomerular meangial cells have been ameliorated by polypodiside. Further investigations revealed the effects of polypodiside on glomerular meangial cells were associated with activation of Nrf2. Co-immunoprecipitation of Nrf2 disclosed polypodiside disrupted the Kelch-like ECH-associated protein-1 (Keap1)-Nrf2 interaction. Molecular docking elucidated polypodiside could enter the Nrf2 binding cavity of Keap1 via interacting with the residues encompassing that cavity. These findings indicate polypodiside is a Keap1-dependent Nrf2 activator affording the catabatic effects against oxidative stress and accumulation of extracellular matrix in glomerular meangial cells under high glucose.


Subject(s)
Extracellular Matrix/metabolism , Glucosides/pharmacology , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Binding Sites , Cell Line , Cell Survival/drug effects , Coumaric Acids/chemistry , Drug Evaluation, Preclinical , Extracellular Matrix/drug effects , Glucose/pharmacology , Glucosides/chemistry , Glucosides/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Mesangial Cells/cytology , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Polypodium/chemistry , Polypodium/metabolism , Reactive Oxygen Species/metabolism
19.
Free Radic Biol Med ; 160: 227-238, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32768570

ABSTRACT

Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance. Hence, it is understood that agents that boost the translocation of Nrf2 might be beneficial rather than those that quantitatively overexpress Nrf2 in treating DN. The deleterious effects of synthetic Nrf2 activators have instigated the researchers to search for phytochemicals that have ambient Nrf2 boosting ability with no side effects, one such phytochemical is Epigallocatechin-3-gallate (EGCG) and it has shown beneficial effects by preventing the progression of DN via influencing Nrf2/ARE pathway, however, the modus operandi is unclear, despite speculations. This study was designed to find out whether supplementation of Nrf2 booster like EGCG at the crucial time of Nrf2 dysfunction can mitigate the progression of DN. Based on the findings of the present study, it might be concluded that the beneficial effect of EGCG in mitigating DN is mediated mainly through its ability to activate the Nrf2/ARE signaling pathway at multiple stages i.e., by downregulating Keap1 and boosting the nuclear Nrf2 level by disrupting Nrf2-Keap1 interaction. These results emphasize that supplementation of EGCG might be more beneficial at an early stage of DN, where dysfunctional Nrf2 accumulation occurs, which should be further validated.


Subject(s)
Catechin/analogs & derivatives , Diabetes Mellitus , Diabetic Nephropathies , Animals , Catechin/pharmacology , Catechin/therapeutic use , Diabetic Nephropathies/drug therapy , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress
20.
Redox Biol ; 33: 101544, 2020 06.
Article in English | MEDLINE | ID: mdl-32336666

ABSTRACT

Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Lung , Oxidants/pharmacology , Oxidative Stress , Pulmonary Disease, Chronic Obstructive/drug therapy , Reactive Oxygen Species/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...