Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.264
Filter
1.
Theranostics ; 14(11): 4411-4437, 2024.
Article in English | MEDLINE | ID: mdl-39113804

ABSTRACT

In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.


Subject(s)
Nanoparticles , Nucleic Acids , Sepsis , Sepsis/drug therapy , Sepsis/therapy , Humans , Nucleic Acids/therapeutic use , Nucleic Acids/administration & dosage , Animals , Nanoparticles/chemistry , Genetic Therapy/methods , Multiple Organ Failure/therapy , Multiple Organ Failure/drug therapy , Gene Transfer Techniques
2.
Talanta ; 279: 126618, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39116729

ABSTRACT

Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 µM for fluorescence and 78 µM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.

3.
Talanta ; 279: 126626, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39116732

ABSTRACT

Thymidine Kinase 1 (TK1) is a pivotal enzyme in fundamental biochemistry and molecular diagnosis, but recognition and molecule detection is a challenging task. Here, we constructed a DNA-integrated hybrid nanochannel sensor for TK1 activity and inhibition assay. Single-stranded DNA containing thymidine was used as a substrate to functionalize the nanochannels, restricting the ion current through channels. With kinase, the thymidine at the termini of the substrate DNA is phosphorylated, elevating surface charge density and mitigating the pore-obstruction effect by increasing transmembrane ion current. The kinase-induced distinctness can be accurately monitored by this hybrid nanodevice, which benefits from its high sensitivity to the change of surface charge. The excellent analytical performance in both kinase enzyme activity and inhibition analysis resulted in efficient and selective evaluation in human serum. Furthermore, compared to current approaches, it greatly simplifies and offers a direct method of analysis, making it a promising sensor technology for cancer management as well as the activities of multiple types of nucleic acid kinases.

4.
Mikrochim Acta ; 191(8): 501, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39093424

ABSTRACT

As the role of exosomes in physiological and pathological processes has been properly perceived, harvesting them and their internal components is critical for subsequent applications. This study is a debut of intermittent lysis, which has been integrated into a simple and easy-to-operate procedure on a single paper-based device to extract exosomal nucleic acid biomarkers for downstream analysis. Exosomes from biological samples were captured by anti-CD63-modified papers before being intermittently lysed by high-temperature, short-time treatment with double-distilled water to release their internal components. Exosomal nucleic acids were finally adsorbed by sol-gel silica for downstream analysis. Empirical trials not only revealed that sporadically dropping 95 °C ddH2O onto the anti-CD63-modified papers every 5 min for 6 times optimized the exosomal nucleic acids extracted by the anti-CD63 paper but also verified that the whole deployed procedure is applicable for point-of-care testing (POCT) in low-resource areas and for both in vitro (culture media) and in vivo (plasma and chronic lesion) samples. Importantly, downstream analysis of exosomal miR-21 extracted by the paper-based procedure integrated with this novel technique discovered that the content of exosomal miR-21 in chronic lesions related to their stages and the levels of exosomal carcinoembryonic antigen originated from colorectal cancer cells correlated to their exosomal miR-21.


Subject(s)
Exosomes , MicroRNAs , Paper , Tetraspanin 30 , Exosomes/chemistry , Humans , Tetraspanin 30/metabolism , MicroRNAs/analysis , MicroRNAs/blood , Biomarkers, Tumor/blood , Point-of-Care Testing
5.
ACS Nano ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105751

ABSTRACT

Nanoparticle-mediated mRNA delivery has emerged as a promising therapeutic modality, but its growth is still limited by the discovery and optimization of effective and well-tolerated delivery strategies. Lipid nanoparticles containing charged or ionizable lipids are an emerging standard for in vivo mRNA delivery, so creating facile, tunable strategies to synthesize these key lipid-like molecules is essential to advance the field. Here, we generate a library of N-substituted glycine oligomers, peptoids, and undertake a multistage down-selection process to identify lead candidate peptoids as the ionizable component in our Nutshell nanoparticle platform. First, we identify a promising peptoid structural motif by clustering a library of >200 molecules based on predicted physical properties and evaluate members of each cluster for reporter gene expression in vivo. Then, the lead peptoid motif is optimized using design of experiments methodology to explore variations on the charged and lipophilic portions of the peptoid, facilitating the discovery of trends between structural elements and nanoparticle properties. We further demonstrate that peptoid-based Nutshells leads to expression of therapeutically relevant levels of an anti-respiratory syncytial virus antibody in mice with minimal tolerability concerns or induced immune responses compared to benchmark ionizable lipid, DLin-MC3-DMA. Through this work, we present peptoid-based nanoparticles as a tunable delivery platform that can be optimized toward a range of therapeutic programs.

6.
Front Cell Dev Biol ; 12: 1435064, 2024.
Article in English | MEDLINE | ID: mdl-39100097

ABSTRACT

Background: Metronidazole (MTZ) is among the first-line drugs against the human gastric pathogen Helicobacter pylori (H. pylori). MTZ is used as a prodrug that is activated by an oxygen-insensitive enzyme NADPH nitroreductase (RdxA). Loss-of-function mutations in rdxA make H. pylori MTZ resistant; however, experimental proof is lacking. Methods: We collected 139 gastric biopsy samples from patients suspected of H. pylori infection in Shanghai, and amplified Hp-specific rdxA gene from 134 samples. All these rdxA genes were sequenced and phylogenetically compared. The effect of mutations on RdxA function was measured by expressing them in Escherichia coli DH5α by using the MTZ sensitivity test. Results: In total, 134 gastric biopsy samples were identified as H. pylori positive. Of the 134 samples, 74 and 6 had point mutations at the various sites or promoter region of rdxA, generating truncated and extended fused proteins, respectively. The remaining 54 were full-length with single nucleotide variation (SNV) compared with the wild-type RdxA from H. pylori, with 49 clustering with hpEastAsia, 3 with hpEurope, and 2 with hpNEAfrica. All 134 rdxA were expressed in E. coli DH5α; 22 and 112 resultant strains showed MTZ-sensitive and MTZ-resistant phenotypes, respectively. Comparative analysis of single nucleotide polymorphisms (SNPs) in the functional and inactivated RdxA revealed 14 novel mutations in RdxA, 5 of which conferred MTZ resistance: S18F, D59S, L62I, S79N, and A187V. Conclusion: The occurrence of MTZ resistance induced by site-mutation of RdxA in patients with H. pylori infection was 83.6% (112/134) in the Shanghai region. The major form of loss-of-function mutation was truncation of RdxA translation at a rate of 58/112 (51.8%). Molecular detection reliably determined the resistance of H. pylori to MTZ. Thus, the functional mutants involved in MTZ resistance facilitate clinical diagnosis and medication based on sequence analysis.

7.
Mol Ther Methods Clin Dev ; 32(3): 101289, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39109217

ABSTRACT

The hepatitis B virus (HBV) infects many people worldwide. As HBV infection frequently leads to liver fibrosis and carcinogenesis, developing anti-HBV therapeutic drugs is urgent. Therapeutic drugs for preventing covalently closed circular DNA (cccDNA) production, which can eliminate HBV infection, are unavailable. The host factor dedicator of cytokinesis 11 (DOCK11) is involved in the synthesis and maintenance of HBV cccDNA in vitro. However, the effectiveness of DOCK11 as a target for the in vivo elimination of HBV cccDNA remains unclear. In this study, we assess whether DOCK11 inhibitors suppress HBV cccDNA production in mouse models of HBV infection. The tocopherol-conjugate hetero- gapmer, a DNA/RNA duplex of gapmer/complementary RNA targeting the DOCK11 sequence, partially reduces the expression of DOCK11, but not that of HBV cccDNA, in the livers of HBV-infected human hepatocyte chimeric mice, along with weight loss and decreased serum human albumin levels. Lipid nanoparticle-encapsulated chemically modified siRNAs specific for DOCK11 suppress DOCK11 expression and decrease HBV cccDNA levels without adverse effects in the mice. Therefore, nucleic acid-based drugs targeting DOCK11 in hepatocytes are potentially effective anti-HBV therapeutics that can reduce HBV cccDNA levels in vivo.

8.
Cancer Lett ; 599: 217152, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094825

ABSTRACT

Monoclonal antibodies targeting immune checkpoints have been widely applied in gastrointestinal cancer immunotherapy. However, systemic administration of various monoclonal antibodies does not often result in sustained effects in reversing the immunosuppressive tumor microenvironment (TME), which may be due to the spatiotemporal dynamic changes of immune checkpoints. Herein, we reported a novel immune checkpoint reprogramming strategy for gastrointestinal cancer immunotherapy. It was achieved by the sequential delivery of siPD-L1 (siRNA for programmed cell death ligand 1) and pOX40L (plasmid for OX40 ligand), which were complexed with two cationic polymer brush-grafted carbon nanotubes (dense short (DS) and dense long (DL)) designed based on the structural characteristics of nucleic acids and brush architectures. Upon administrating DL/pOX40L for the first three dosages, then followed by DS/siPD-L1 for the next three dosages to the TME, it upregulated the stimulatory checkpoint OX40L on dendritic cells (DCs) and downregulated inhibitory checkpoint PD-L1 on tumor cells and DCs in a sequential reprogramming manner. Compared with other combination treatments, this sequential strategy drastically boosted the DCs maturation, and CD8+ cytotoxic T lymphocytes infiltration in tumor site. Furthermore, it could augment the local antitumor response and improve the T cell infiltration in tumor-draining lymph nodes to reverse the peripheral immunosuppression. Our study demonstrated that sequential nucleic acid delivery strategy via personalized nanoplatforms effectively reversed the immunosuppression status in both tumor microenvironment and peripheral immune landscape, which significantly enhanced the systemic antitumor immune responses and established an optimal immunotherapy strategy against gastrointestinal cancer.

9.
Trends Biotechnol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39095257

ABSTRACT

The integration of nucleic acid amplification (NAA) with the CRISPR detection system has led to significant advancements and opportunities for development in molecular diagnostics. Nevertheless, the incompatibility between CRISPR cleavage and NAA has significantly impeded the commercialization of this technology. Currently, several one-pot detection strategies based on CRISPR systems have been devised to address concerns regarding aerosol contamination risk and operational complexity associated with step-by-step detection as well as the sensitivity limitation of conventional one-pot methods. In this review, we provide a comprehensive introduction and outlook of the various solutions of the one-pot CRISPR assay for practitioners who are committed to developing better CRISPR nucleic acid detection technologies to promote the progress of molecular diagnostics.

10.
Iran J Pathol ; 19(2): 170-176, 2024.
Article in English | MEDLINE | ID: mdl-39118794

ABSTRACT

Background & Objective: Providing equitable access to good quality, timely, and affordable laboratory testing has always been a top priority for the Ministry of Health and Medical Education (MoH-ME) and the Reference Health Laboratory (RHL). Considering the significant role of medical laboratories in disease surveillance, RHL developed a strategic plan to manage laboratory services during the COVID-19 pandemic based on the "Strategic Framework for strengthening health laboratory services, 2016-2020" proposed by the World Health Organization (WHO). This article describes the steps taken to establish the strategic framework in Iran. Methods: Firstly, a National Laboratory Committee was formed in MoH-ME and a situation analysis was conducted to explore the strengths, weaknesses, opportunities, and threats in different components of our laboratory system. Gaps and resources needed to address those gaps were determined; then, RHL outlined operational processes and mechanisms for monitoring the activities. Results: The WHO strategic roadmap and its six strategic goals concerning leadership, quality, human resources, safety and security, laboratory networking, and rational use of laboratory testing, helped us to promote national laboratory services in accordance with health system requirements in the COVID-19 pandemic. Conclusion: The establishment of a national molecular laboratory network with more than 500 laboratories from different sectors may result in timely access to countrywide laboratory services and would be beneficial for future COVID-19 and/or other viral outbreaks. Continual evaluation of the COVID-19 laboratories' performance, production of PCR test kits by the local manufacturers, and development of a platform for virtual training would be other accomplishments that Iran achieved in coping with the recent pandemic.

11.
Biotechnol Lett ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017763

ABSTRACT

Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 µM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R2) of 0.9595. The final LOD was determined to be 0.002 µM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.

12.
Acta Pharm Sin B ; 14(7): 2885-2900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027251

ABSTRACT

Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.

13.
Mater Today Bio ; 27: 101138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39027677

ABSTRACT

In contrast to conventional therapies that require repeated dosing, gene therapy can treat diseases by correcting defective genes after a single transfection and achieving cascade amplification, and has been widely studied in clinical settings. However, nucleic acid drugs are prone to catabolism and inactivation. A variety of nucleic acid drug vectors have been developed to protect the target gene against nuclease degradation and increase the transformation efficiency and safety of gene therapy. In addition, gene therapy is often combined with chemotherapy, phototherapy, magnetic therapy, ultrasound, and other therapeutic modalities to improve the therapeutic effect. This review systematically introduces ribonucleic acid (RNA) interference technology, antisense oligonucleotides, and clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing. It also introduces the commonly used nucleic acid drug vectors, including viral vectors (adenovirus, retrovirus, etc.), organic vectors (lipids, polymers, etc.), and inorganic vectors (MOFs, carbon nanotubes, mesoporous silica, etc.). Then, we describe the combined gene therapy modalities and the pathways of action and report the recent applications in solid tumors of the combined gene therapy. Finally, the challenges of gene therapy in solid tumor treatment are introduced, and the prospect of application in this field is presented.

14.
Anal Chim Acta ; 1317: 342872, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030016

ABSTRACT

Fluorescently labeled DNA oligonucleotides and gold nanospheres have been frequently utilized in biosensors, providing efficient nucleic acid detection. Nevertheless, the restricted loading capacity of gold nanospheres undermines overall sensitivity. In this study, we employed four-atom-thick ultrathin gold nanosheets (AuNSs), utilizing a "pre-mix model" for rapid target nucleic acid detection. In this approach, fluorescently labeled DNA probes were pre-incubated with the target nucleic acid, followed by the addition of AuNSs for probe adsorption and fluorescence quenching. With the developed method, we efficiently and rapidly detected the SARS-CoV-2 N gene sequence within 30 min, involving a brief 15-min target pre-incubation and a subsequent 15-min adsorption of free probes and fluorescence quenching by AuNSs. This method exhibited heightened sensitivity compared to gold nanospheres, boasting a limit of detection (LOD) of 0.808 nM. Furthermore, exceptional recovery was achieved in simulated biological samples. The study introduces an effective strategy for nucleic acid sensing characterized by rapidity, heightened sensitivity, ease of operation, and robustness. These findings encourage further development of rapid biomarker sensing methods employing 2D nanomaterials.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Gold , Limit of Detection , Metal Nanoparticles , SARS-CoV-2 , Gold/chemistry , SARS-CoV-2/isolation & purification , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Humans , Spectrometry, Fluorescence , Nanostructures/chemistry , DNA Probes/chemistry , COVID-19/diagnosis , COVID-19/virology
15.
J Struct Biol X ; 10: 100106, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39040530

ABSTRACT

K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.

16.
Int J Biol Macromol ; 277(Pt 1): 134021, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032884

ABSTRACT

We study transitions in intrinsically disordered regions (IDRs) upon complex formation, utilizing X-ray-solved structural dataset of protein-DNA and protein-RNA complexes, along with their available unbound protein forms. The identified IDRs are categorized into three classes: Disordered-to-Ordered (D-O), Disordered-to-Partial Ordered (D-PO) and Disordered-to-Disordered (D-D) after comparing them in unbound and complex forms. In the D-O class, IDRs form secondary structures like coils, helices, and strands upon binding to nucleic acids. Though a majority of these IDRs are present at the surface of the complexes, a significant number of IDRs are also observed at the interfaces and are involved in polar interactions. The hydrogen bonds made by the interface IDRs (B_IDRs) with phosphates and bases of nucleic acids are comparatively more than those formed with sugars. B_IDRs form more H-bonds with the ribose in protein-RNA than with the deoxyribose in protein-DNA. Among the B_IDRs, Arg and Lys prefer to interact with the major and minor grooves of DNA and RNA, respectively. Ser, however, prefers the minor groove in both the nucleic acids. Interestingly, we report 61 and 48 IDRs in 31 protein-DNA and 22 protein-RNA complexes, respectively, suggesting nucleic acid binding to proteins may also result in ordered-to-disordered transitions.

17.
Pathogens ; 13(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39057764

ABSTRACT

The rapid spread of African swine fever virus (ASFV), causing severe and often lethal disease in domestic pigs and Eurasian wild boar, continues to be a threat to pig populations and dependent industries. Despite scientific achievements that have deepened our understanding of ASFV pathogenesis, alternative transmission routes for ASFV remain to be elucidated. We previously demonstrated the efficient transmission of ASFV from infected boars to naïve recipient gilts via artificial insemination, thereby highlighting the importance of surveillance of boar semen prior to its shipment. Since the accurate and reliable detection of even low amounts of ASFV in boar semen is key to disease prevention and control, we established a suitable diagnostic workflow to efficiently detect the ASFV genome in boar semen. Here, we assessed the sensitivity of various routine nucleic acid extraction kits as well as qPCR protocols in detecting the ASFV genome in the blood and semen of infected boars. The feasibility of the respective kits and methods for future use in boar studs was also considered. Variability in sensitivity mostly concerned samples with low to very low amounts of the ASFV genome. Ultimately, we defined a well-suited workflow for precisely detecting the ASFV genome in boar semen as early as 2 days post ASFV infection.

18.
EMBO Rep ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060455

ABSTRACT

RNA vaccines elicit protective immunity against SARS-CoV-2, but the use of mRNA as an antiviral immunotherapeutic is unexplored. Here, we investigate the activity of lipidoid nanoparticle (LNP)-formulated mRNA encoding human IFNλ1 (ETH47), which is a critical driver of innate immunity at mucosal surfaces protecting from viral infections. IFNλ1 mRNA administration promotes dose-dependent protein translation, induction of interferon-stimulated genes without relevant signs of unspecific immune stimulation, and dose-dependent inhibition of SARS-CoV-2 replication in vitro. Pulmonary administration of IFNλ1 mRNA in mice results in a potent reduction of virus load, virus-induced body weight loss and significantly increased survival. These data support the development of inhaled administration of IFNλ1 mRNA as a potential prophylactic option for individuals exposed to SARS-CoV-2 or at risk suffering from COVID-19. Based on the broad antiviral activity of IFNλ1 regardless of virus or variant, this approach might also be utilized for other respiratory viral infections or pandemic preparedness.

19.
Noncoding RNA ; 10(4)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39051376

ABSTRACT

We developed a technology for detecting and quantifying trace nucleic acids using a bracketing protocol designed to yield a copy number with approximately ± 20% accuracy across all concentrations. The microRNAs (miRNAs) let-7b, miR-15b, miR-21, miR-375 and miR-141 were measured in serum and urine samples from healthy subjects and patients with breast, prostate or pancreatic cancer. Detection and quantification were amplification-free and enabled using osmium-tagged probes and MinION, a nanopore array detection device. Combined serum from healthy men (Sigma-Aldrich, St. Louis, MO, USA #H6914) was used as a reference. Total RNA isolated from biospecimens using commercial kits was used as the miRNA source. The unprecedented ± 20% accuracy led to the conclusion that miRNA copy numbers must be normalized to the same RNA content, which in turn illustrates (i) independence from age, sex and ethnicity, as well as (ii) equivalence between serum and urine. miR-21, miR-375 and miR-141 copies in cancers were 1.8-fold overexpressed, exhibited zero overlap with healthy samples and had a p-value of 1.6 × 10-22, tentatively validating each miRNA as a multi-cancer biomarker. miR-15b was confirmed to be cancer-independent, whereas let-7b appeared to be a cancer biomarker for prostate and breast cancer, but not for pancreatic cancer.

20.
J Extracell Vesicles ; 13(7): e12483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051765

ABSTRACT

Extracellular vesicles (EVs) have emerged as promising biomaterials for the treatment of different disease. However, only handful types of EVs with clinical transformation potential have been reported to date, and their preparation on a large scale under biosafety-controlled conditions is limited. In this study, we characterize a novel type of EV with promising clinical application potential: dehydration-induced extracellular vesicles (DIMVs). DIMV is a type of micron-diameter cell vesicle that contains more bioactive molecules, such as proteins and RNA, but not DNA, than previously reported cell vesicles. The preparation of DIMV is extraordinarily straightforward, which possesses a high level of biosafety, and the protein utilization ratio is roughly 600 times greater than that of naturally secreted EVs. Additional experiments demonstrate the viability of pre- or post-isolation DIMV modification, including gene editing, nucleic acid encapsulation or surface anchoring, size adjustment. Finally, on animal models, we directly show the biosafety and immunogenicity of DIMV, and investigate its potential application as tumour vaccine or drug carrier in cancer treatment.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Animals , Humans , Mice , Dehydration/metabolism , Cancer Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...