ABSTRACT
Genetic characterizations of rabies viruses circulating in carnivore and non-carnivore animals were investigated for the first time in Arkhangai province, a central region of Mongolia. Also, glycoprotein gene of the rabies virus was sequenced for the first time in Mongolia. The nucleotide sequences of the glycoprotein and nucleoprotein genes were analysed, revealing the presence of multiple lineages in this area. Of particular concern are the lineages identified in carnivores, which might emerge to spread throughout Mongolia, further facilitating transboundary transmission to neighbouring countries, including China and Russia.
Subject(s)
Rabies virus , Rabies , Animals , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Nucleoproteins/genetics , Mongolia , PhylogenyABSTRACT
In rabies diagnosis, it is essential to count on a rapid test to give a quick response. The combined sensitivity and robustness of the TaqMan RT-PCR assays (qRT-PCR) have made these methods a valuable alternative for rabies virus (RABV) detection. We conducted a study to compare the applicability of two widely used qRT-PCR assays targeting the nucleoprotein gene (LysGT1 assay) and leader sequences (LN34 qRT-PCR assay) of RABV genomes, in all variants circulating in Argentina. A total of 44 samples obtained from bats, dogs, cattle, and horses, that were previously tested for rabies by FAT and conventional RT-PCR, were used in the study. All variants were successfully detected by the pan-lyssavirus LN34 qRT-PCR assay. The LysGT1 assay failed to detect three bat-related variants. We further sequenced the region targeted by LysGT1 and demonstrated that the presence of three or more mismatches with respect to the primers and probe sequences precludes viral detection. We conclude that the LysGT1 assay is prone to yield variant-dependent false-negative test results, and in consequence, the LN34 assay would ensure more effective detection of RABV in Argentina.
Subject(s)
Genetic Variation , Rabies virus/genetics , Rabies/diagnosis , Rabies/virology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Amino Acid Sequence , Animals , Argentina/epidemiology , Cattle , Chiroptera , Geography, Medical , Horses , Humans , Nucleoproteins/genetics , Phylogeny , Phylogeography , RNA, Viral , Rabies/epidemiology , Rabies virus/classification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methodsABSTRACT
In 2010, a novel cytorhabdovirus named alfalfa dwarf virus (ADV) was detected for the first time in lucerne crops in Argentina showing dwarfism, in mixed infections with several other viruses. ADV appears to be endemic to Argentina and has not been reported elsewhere. In this study, we have investigated the genetic variability of ADV based on the complete nucleoprotein (N) gene of 13 isolates from different lucerne-growing regions in Argentina. Phylogenetic and sequence identity analyses showed that all ADV isolates are closely related and have not diverged more than 1% in the N gene despite geographical separation. These data provide further evidence that ADV is new to science and emerged and spread very recently. A total of 43 single-nucleotide polymorphisms were identified between the ADV isolates studied. Analysis of N gene ORF sequence revealed a mutational bias, with more transitions than transversions. In all cases, the ratio of non-synonymous/synonymous nucleotide changes was < 1, indicating that ADV N gene is under predominantly purifying selection.
Subject(s)
Genetic Variation , Medicago sativa/virology , Plant Diseases/virology , Rhabdoviridae/classification , Rhabdoviridae/genetics , Argentina , Genome, Viral , Open Reading Frames , Phylogeny , Polymorphism, Single Nucleotide , RNA, ViralABSTRACT
INTRODUCTION: Rabies is an acute disease of the central nervous system and is responsible for the deaths of thousands of humans, wild animals and livestock, particularly cattle, as well as causing major economic losses. This study describes the genetic characterization of rabies virus variants that circulate in Desmodus rotundus populations and are transmitted to herbivores. METHODS: Fifty rabies virus isolates from bovines and equines in the States of São Paulo and Minas Gerais, Brazil, were genetically characterized and compared with sequences retrieved from GenBank. RESULTS: Two clusters (I and II) with mean nucleotide identities of 99.1 and 97.6 percent were found. The first of these contained nearly all the samples analyzed. Lineages from other Brazilian states grouped in cluster II. CONCLUSIONS: Analysis of the amino acid sequences of the N proteins revealed the existence of genetic markers that may indicate possible variations between geographic regions, although the biologically active regions are conserved within the species over space and time.
INTRODUÇÃO: A raiva é uma doença aguda do sistema nervoso central e é responsável por mortes de milhares de humanos, animais silvestres e animais de criação - especialmente bovinos - além de causar elevadas perdas econômicas. Este trabalho descreve a caracterização genética das variantes do vírus da raiva que circulam em populações de Desmodus rotundus e são transmitidas aos herbívoros. MÉTODOS: Cinquenta isolados de vírus da raiva de bovinos e equinos provenientes dos Estados de São Paulo e Minas Gerais, Brasil, foram caracterizadas geneticamente e comparadas com sequências recuperadas do GenBank. RESULTADOS: Dois clusters, I e II, apresentando identidades médias de nucleotídeos de 99,1 e 97,6 por cento, foram obtidos, sendo o primeiro composto de quase a totalidade das amostras analisadas. Linhagens de outros estados do Brasil "clustered" no II. CONCLUSÕES: A análise das sequências de aminoácidos da proteína N revelou que existem marcadores genéticos que podem determinar uma possível regionalidade embora as regiões biologicamente ativas apresentem-se conservadas dentro das espécies ao longo do tempo e espaço.