Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 641
Filter
1.
Chin J Cancer Res ; 36(3): 298-305, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988482

ABSTRACT

Objective: Nucleotide excision repair (NER) plays a vital role in maintaining genome stability, and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation. This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children. Methods: In this five-center case-control study, we enrolled 966 subjects from East China (193 hepatoblastoma patients and 773 healthy controls). The TaqMan method was used to genotype 19 single nucleotide polymorphisms (SNPs) in NER pathway genes, including ERCC1, XPA, XPC, XPD, XPF, and XPG. Then, multivariate logistic regression analysis was performed, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to assess the strength of associations. Results: Three SNPs were related to hepatoblastoma risk. XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model (adjusted OR=1.49, 95% CI=1.07-2.08, P=0.019; adjusted OR=1.66, 95% CI=1.12-2.45, P=0.012, respectively). However, XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model (adjusted OR=0.68, 95% CI=0.49-0.95; P=0.024). Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups. Moreover, there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) analysis. Conclusions: In summary, NER pathway gene polymorphisms (XPC rs2229090, XPD rs3810366, and XPD rs238406) are significantly associated with hepatoblastoma risk, and further research is required to verify these findings.

2.
Cureus ; 16(6): e61645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975443

ABSTRACT

Xeroderma pigmentosum is a rare autosomal recessive disorder resulting in heightened cutaneous photosensitivity due to aberrant DNA repair mechanisms. Early-life developmental delay and cognitive impairment have been described in xeroderma pigmentosum cases. However, psychiatric symptoms in adulthood as the presenting feature of xeroderma pigmentosum have not been reported. We report a young adult with xeroderma pigmentosum group G presenting with prominent neuropsychiatric manifestations and evidence of neurodegeneration. The clinical, laboratory, and radiological findings, skin biopsy, and the results of the genetic testing of the patient have been described after obtaining written and informed consent. A young adult male with skin photosensitivity since infancy developed hyper-religiosity, delusions, suicidal ideations, speech hypernasality, lower limb spasticity, and cognitive impairment over the past four years. The MRI of the brain showed diffuse cerebral atrophy. The skin biopsy from bilateral cheeks showed evidence of flattening and thinning of rete ridges, pigment incontinence, and perivascular and periappendageal inflammatory infiltrate. The whole exome sequencing in ethylenediaminetetraacetic acid (EDTA) blood revealed a compound heterozygous likely pathogenic mutation in intron 13 (c.2880-2A>G (3' splice site)) and a mutation in exon 15 (c.3146del (p.Asp1049ValfsTer12)) in the ERCC5 gene suggestive of xeroderma pigmentosum group G. This case highlights that prominent neuropsychiatric features in adulthood can occur due to xeroderma pigmentosum. Thus, xeroderma pigmentosum group G should be considered as a possibility among young adults presenting with neuropsychiatric features, evidence of neurodegeneration, and early-life skin photosensitivity.

3.
J Biol Chem ; : 107579, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025455

ABSTRACT

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.

4.
DNA Repair (Amst) ; 141: 103728, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029374

ABSTRACT

Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease xeroderma pigmentosum. In NER, DNA lesions are excised within an oligonucleotide of 25-30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.

5.
J Fungi (Basel) ; 10(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921406

ABSTRACT

In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs.

6.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38843184

ABSTRACT

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Humans , Animals , Mice , DNA Helicases/metabolism , DNA Helicases/genetics , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Transcription, Genetic , Phosphorylation , Casein Kinase II/metabolism , Casein Kinase II/genetics , Mice, Knockout , DNA Damage , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Chromatin/metabolism , Ubiquitination , Excision Repair
7.
J Invest Dermatol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871024

ABSTRACT

The change of repair efficiency of UV-induced pyrimidine dimers due to aging was examined in replicatively senesced fibroblasts. The fibroblasts with repeated passages showed the characteristics of cellular senescence, including irreversible cell cycle arrest, elevated ß-galactosidase activity, and senescence-associated secretory phenotype. The incision efficiency of oligonucleotide containing UV lesions was similar regardless of cell doubling levels, but the gap filling process was impaired in replicatively senescent cells. The releases of xeroderma pigmentosum group G, proliferating cell nuclear antigen, and replication protein A from damaged sites were delayed, which might have disturbed the DNA polymerase progression. The persistent single-stranded DNA was likely converted to double-strand breaks, leading to ataxia telangiectasia-mutated phosphorylation and 53BP1 foci formation. Phosphorylated histone H2AX (γ-H2AX) induction mainly occurred in G1 phase in senescent cells, not in S phase such as in normal cells, indicating that replication stress-independent double-strand breaks might be formed. MRE11 having nuclease activity accumulated to damaged sites at early time point after UV irradiation but not released in senescent cells. The pharmacological studies using specific inhibitors for the nuclease activity suggested that MRE11 contributed to the enlargement of single-stranded DNA gap, facilitating the double-strand break formation.

8.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38722894

ABSTRACT

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.


Subject(s)
Arabidopsis , DNA Damage , DNA Repair , DNA, Mitochondrial , Drosophila melanogaster , Saccharomyces cerevisiae , Ultraviolet Rays , DNA, Mitochondrial/genetics , Arabidopsis/genetics , Arabidopsis/radiation effects , Ultraviolet Rays/adverse effects , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae/metabolism , Drosophila melanogaster/genetics , Pyrimidine Dimers/genetics , Pyrimidine Dimers/metabolism , Genome, Mitochondrial
9.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673978

ABSTRACT

DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.


Subject(s)
DNA Repair , Histones , Mutation , Nucleosomes , Protein Processing, Post-Translational , Nucleosomes/metabolism , Nucleosomes/genetics , Humans , Histones/metabolism , Histones/genetics , Animals , DNA Damage , Neoplasms/genetics , Neoplasms/metabolism , Histone Code , Chromatin/metabolism , Chromatin/genetics
10.
Protein Sci ; 33(4): e4948, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501485

ABSTRACT

Increasing antimicrobial drug resistance represents a global existential threat. Infection is a particular problem in immunocompromised individuals, such as patients undergoing cancer chemotherapy, due to the targeting of rapidly dividing cells by antineoplastic agents. We recently developed a strategy that targets bacterial nucleotide excision DNA repair (NER) to identify compounds that act as antimicrobial sensitizers specific for patients undergoing cancer chemotherapy. Building on this, we performed a virtual drug screening of a ~120,000 compound library against the key NER protein UvrA. From this, numerous target compounds were identified and of those a candidate compound, Bemcentinib (R428), showed a strong affinity toward UvrA. This NER protein possesses four ATPase sites in its dimeric state, and we found that Bemcentinib could inhibit UvrA's ATPase activity by ~90% and also impair its ability to bind DNA. As a result, Bemcentinib strongly diminishes NER's ability to repair DNA in vitro. To provide a measure of in vivo activity we discovered that the growth of Escherichia coli MG1655 was significantly inhibited when Bemcentinib was combined with the DNA damaging agent 4-NQO, which is analogous to UV. Using the clinically relevant DNA-damaging antineoplastic cisplatin in combination with Bemcentinib against the urological sepsis-causing E. coli strain EC958 caused complete growth inhibition. This study offers a novel approach for the potential development of new compounds for use as adjuvants in antineoplastic therapy.


Subject(s)
Antineoplastic Agents , Benzocycloheptenes , Escherichia coli Proteins , Neoplasms , Triazoles , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Repair , DNA Damage , Antineoplastic Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , DNA/metabolism , Adenosine Triphosphatases/metabolism
11.
Front Endocrinol (Lausanne) ; 15: 1348216, 2024.
Article in English | MEDLINE | ID: mdl-38516408

ABSTRACT

The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Humans , DNA Repair , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Inflammation/complications , DNA Damage , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
12.
Article in English | MEDLINE | ID: mdl-38432774

ABSTRACT

The ultraviolet (UV) component of sunlight can damage DNA. Although most solar UV is absorbed by the ozone layer, wavelengths > 300 nm (UVA and UVB bands) can reach the Earth's surface. It is essential to understand the genotoxic effects of UV light, particularly in natural environments. Caulobacter crescentus, a bacterium widely employed as a model for cell cycle studies, was selected for this study. Strains proficient and deficient in DNA repair (uvrA-) were used to concurrently investigate three genotoxic endpoints: cytotoxicity, SOS induction, and gene mutation, using colony-formation, the SOS chromotest, and RifR mutagenesis, respectively. Our findings underscore the distinct impacts of individual UV bands and the full spectrum of sunlight itself in C. crescentus. UVC light was highly genotoxic, especially for the repair-deficient strain. A UVB dose equivalent to 20 min sunlight exposure also affected the cells. UVA exposure caused a significant response only at high doses, likely due to activation of photorepair. Exposure to solar irradiation resulted in reduced levels of SOS induction, possibly due to decreased cell survival. However, mutagenicity is increased, particularly in uvrA- deficient cells.


Subject(s)
Caulobacter crescentus , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Caulobacter crescentus/genetics , DNA Damage , DNA Repair , Mutation
13.
DNA Repair (Amst) ; 137: 103665, 2024 May.
Article in English | MEDLINE | ID: mdl-38513450

ABSTRACT

During transcription-coupled DNA repair (TCR) the detection of DNA damage and initiation of nucleotide excision repair (NER) is performed by translocating RNA polymerases (RNAP), which are arrested upon encountering bulky DNA lesions. Two opposing models of the subsequent steps of TCR in bacteria exist. In the first model, stalled RNAPs are removed from the damage site by recruitment of Mfd which dislodges RNAP by pushing it forwards before recruitment of UvrA and UvrB. In the second model, UvrD helicase backtracks RNAP from the lesion site. Recent studies have proposed that both UvrD and UvrA continuously associate with RNAP before damage occurs, which forms the primary damage sensor for NER. To test these two models of TCR in living E. coli, we applied super-resolution microscopy (PALM) combined with single particle tracking to directly measure the mobility and recruitment of Mfd, UvrD, UvrA, and UvrB to DNA during ultraviolet-induced DNA damage. The intracellular mobilities of NER proteins in the absence of DNA damage showed that most UvrA molecules could in principle be complexed with RNAP, however, this was not the case for UvrD. Upon DNA damage, Mfd recruitment to DNA was independent of the presence of UvrA, in agreement with its role upstream of this protein in the TCR pathway. In contrast, UvrD recruitment to DNA was strongly dependent on the presence of UvrA. Inhibiting transcription with rifampicin abolished Mfd DNA-recruitment following DNA damage, whereas significant UvrD, UvrA, and UvrB recruitment remained, consistent with a UvrD and UvrA performing their NER functions independently of transcribing RNAP. Together, although we find that up to ∼8 UvrD-RNAP-UvrA complexes per cell could potentially form in the absence of DNA damage, our live-cell data is not consistent with this complex being the primary DNA damage sensor for NER.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription Factors/metabolism , Single Molecule Imaging , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/metabolism , DNA Repair , DNA Damage , DNA-Directed RNA Polymerases/metabolism , DNA/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , DNA Helicases/metabolism
14.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338953

ABSTRACT

Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA End-Joining Repair , Genomic Instability , DNA
15.
Methods ; 224: 47-53, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387709

ABSTRACT

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Repair/genetics , DNA Damage/genetics , Excision Repair , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/chemistry , Xeroderma Pigmentosum Group A Protein/metabolism , DNA/chemistry , Ultraviolet Rays , Nucleotides , Protein Binding
16.
ChemMedChem ; 19(8): e202300648, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38300970

ABSTRACT

The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 µM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.


Subject(s)
Cisplatin , Testicular Neoplasms , Humans , Male , Cisplatin/pharmacology , DNA/metabolism , DNA Damage , DNA Repair , DNA-Binding Proteins/chemistry , Endonucleases/metabolism , Peptides/metabolism , Xeroderma Pigmentosum Group A Protein/chemistry , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism , Female
17.
Cell Rep Methods ; 4(1): 100674, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38176411

ABSTRACT

Transcription by RNA polymerase II (RNA Pol II) is crucial for cellular function, but DNA damage severely impedes this process. Thus far, transcription-blocking DNA lesions (TBLs) and their repair have been difficult to quantify in living cells. To overcome this, we generated, using CRISPR-Cas9-mediated gene editing, mScarletI-tagged Cockayne syndrome group B protein (CSB) and UV-stimulated scaffold protein A (UVSSA) knockin cells. These cells allowed us to study the binding dynamics of CSB and UVSSA to lesion-stalled RNA Pol II using fluorescence recovery after photobleaching (FRAP). We show that especially CSB mobility is a sensitive transcription stress marker at physiologically relevant DNA damage levels. Transcription-coupled nucleotide excision repair (TC-NER)-mediated repair can be assessed by studying CSB immobilization over time. Additionally, flow cytometry reveals the regulation of CSB protein levels by CRL4CSA-mediated ubiquitylation and deubiquitylation by USP7. This approach allows the sensitive detection of TBLs and their repair and the study of TC-NER complex assembly and stability in living cells.


Subject(s)
DNA Repair , RNA Polymerase II , RNA Polymerase II/genetics , Transcription, Genetic , DNA Damage , Proteins/genetics , DNA/genetics
18.
J Mol Biol ; 436(6): 168450, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38246411

ABSTRACT

Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages. Exposure to DNA damaging agents results in lower PCR signal in comparison to non-damaged DNA, and repair is measured as the restoration of PCR signal over time. We show that the method successfully detects damages induced by ultraviolet (UV) radiation, by the carcinogenic component of cigarette smoke benzo[a]pyrene diol epoxide (BPDE) and by the chemotherapeutic drug cisplatin. Damage removal measured by dsPCR in a heterochromatic region is less efficient than in a transcribed and accessible region. Furthermore, lower repair is measured in repair-deficient knock-out cells. This straight-forward method could be applied by non-DNA repair experts to study the involvement of their gene-of-interest in repair. Furthermore, this method is fully amenable for high-throughput screening of DNA repair activity.


Subject(s)
DNA Adducts , DNA Damage , DNA Repair , Humans , Carcinogens/toxicity , DNA/drug effects , DNA/radiation effects , DNA Adducts/analysis , DNA Repair/genetics , Polymerase Chain Reaction/methods
19.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37904932

ABSTRACT

Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed the eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps from a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), or one that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.

20.
Microbiol Res ; 280: 127589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154444

ABSTRACT

Rad2, Rad14 and Rad26 recover ultraviolet (UV) damage by nucleotide excision repair (NER) in budding yeast but their functions in filamentous fungi have not been elucidated. Here, we report mechanistically different anti-UV effects of nucleus-specific Rad2, Rad14 and Rad26 orthologs in Metarhizium robertsii, an insect-pathogenic fungus. The null mutants of rad2, rad14 and rad26 showed a decrease of ∼90% in conidial resistance to UVB irradiation. When conidia were impaired at a UVB dose of 0.15 J/cm2, they were photoreactivated (germinated) by only 6-13% through a 5-h light plus 19-h dark incubation, whereas 100%, 80% and 70% of the wild-type conidia were photoreactivated at 0.15, 0.3 and 0.4 J/cm2, respectively. The dose-dependent photoreactivation rates were far greater than the corresponding 24-h dark reactivation rates and were largely enhanced by the overexpression (OE) of rad2, rad14 or rad26 in the wild-type strain. The OE strains exhibited markedly greater activities in photoreactivation of conidia inactivated at 0.5-0.7 J/cm2 than did the wild-type strain. Confirmed interactions of Rad2, Rad14 and Rad26 with photolyase regulators and/or Rad1 or Rad10 suggest that each of these proteins could have evolved into a component of the photolyase regulator-cored protein complex to mediate photoreactivation. The interactions inhibited in the null mutants resulted in transcriptional abolishment or repression of those factors involved in the complex. In conclusion, the anti-UV effects of Rad2, Rad14 and Rad26 depend primarily on DNA photorepair-dependent photoreactivation in M. robertsii and mechanistically differ from those of yeast orthologs depending on NER.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Metarhizium , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Saccharomyces cerevisiae/genetics , DNA Damage , Metarhizium/genetics , Metarhizium/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...