Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38722894

ABSTRACT

UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.


Subject(s)
Arabidopsis , DNA Damage , DNA Repair , DNA, Mitochondrial , Drosophila melanogaster , Saccharomyces cerevisiae , Ultraviolet Rays , DNA, Mitochondrial/genetics , Arabidopsis/genetics , Arabidopsis/radiation effects , Ultraviolet Rays/adverse effects , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae/metabolism , Drosophila melanogaster/genetics , Pyrimidine Dimers/genetics , Pyrimidine Dimers/metabolism , Genome, Mitochondrial
2.
ChemMedChem ; 19(8): e202300648, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38300970

ABSTRACT

The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 µM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.


Subject(s)
Cisplatin , Testicular Neoplasms , Humans , Male , Cisplatin/pharmacology , DNA/metabolism , DNA Damage , DNA Repair , DNA-Binding Proteins/chemistry , Endonucleases/metabolism , Peptides/metabolism , Xeroderma Pigmentosum Group A Protein/chemistry , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/metabolism , Female
3.
Methods ; 224: 47-53, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387709

ABSTRACT

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Repair/genetics , DNA Damage/genetics , Excision Repair , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/chemistry , Xeroderma Pigmentosum Group A Protein/metabolism , DNA/chemistry , Ultraviolet Rays , Nucleotides , Protein Binding
4.
Trends Biochem Sci ; 48(10): 873-882, 2023 10.
Article in English | MEDLINE | ID: mdl-37558547

ABSTRACT

The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.


Subject(s)
Escherichia coli , Transcription, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Repair , DNA Damage , DNA/metabolism , Genomics , Receptors, Antigen, T-Cell
5.
Methods Mol Biol ; 2701: 77-90, 2023.
Article in English | MEDLINE | ID: mdl-37574476

ABSTRACT

Many chemicals cause mutation or cancer in animals and humans by forming DNA lesions, including base adducts, which play a critical role in mutagenesis and carcinogenesis. A large number of such adducts are repaired by the DNA glycosylase-mediated base excision repair (BER) pathway, and some are processed by nucleotide excision repair (NER) and nucleotide incision repair (NIR). To understand what structural features determine repair enzyme specificity and mechanism in chemically modified DNA in vitro, we developed and optimized a DNA cleavage assay using defined oligonucleotides containing a single, site specifically placed lesion. This assay can be used to investigate novel activities against any newly identified derivatives from chemical compounds, substrate specificity and cleavage efficiency of repair enzymes, and quantitative structure-function relationships. Overall, the methodology is highly sensitive and can also be modified to explore whether a lesion is processed by NER or NIR activity, as well as to study its miscoding properties in translesion DNA synthesis (TLS).


Subject(s)
DNA Glycosylases , Oligonucleotides , Humans , Animals , Oligonucleotides/genetics , Oligonucleotides/metabolism , DNA Cleavage , DNA Repair , DNA Glycosylases/metabolism , DNA/genetics
6.
Front Pharmacol ; 14: 1157433, 2023.
Article in English | MEDLINE | ID: mdl-37324464

ABSTRACT

Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.

7.
Proc Natl Acad Sci U S A ; 120(27): e2217423120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364129

ABSTRACT

Xeroderma pigmentosum (XP) is a genodermatosis defined by cutaneous photosensitivity with an increased risk of skin tumors because of DNA repair deficiency. The worldwide prevalence of XP is ~1 to 4 in million, with higher incidence in some countries and regions including Japan (1 in 22,000) and North Africa due to founder mutations and a high degree of consanguinity. Among XP, the complementation group F (XP-F), is a rare form (1% of worldwide XP); however, this is underdiagnosed, because the ERCC4/XPF gene is essential for fetal development and most of previously reported ERCC4/XPF pathogenic variants are hypomorphs causing relatively mild phenotypes. From the largest Japanese XP cohort study, we report 17 XP-F cases bearing two pathogenic variants, both identified in deep intronic regions of the ERCC4/XPF gene. The first variant, located in intron 1, is a Japanese founder mutation, which additionally accounts for ~10% of the entire Japanese XP cases (MAF = 0.00196), causing an aberrant pre-mRNA splicing due to a miss-binding of U1snRNA. The second mutation located in intron eight induces an alternative polyadenylation. Both mutations cause a reduction of the ERCC4/XPF gene expression, resulting in XP clinical manifestations. Most cases developed early-onset skin cancers, indicating that these variants need critical attention. We further demonstrate that antisense oligonucleotides designed for the mutations can restore the XPF protein expression and DNA repair capacity in the patients' cells. Collectively, these pathogenic variants can be potential therapeutic targets for XP.


Subject(s)
Dermatitis , Xeroderma Pigmentosum , Humans , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/therapy , Xeroderma Pigmentosum/metabolism , DNA Repair/genetics , Introns/genetics , Cohort Studies , Mutation , Dermatitis/genetics
8.
DNA Repair (Amst) ; 126: 103487, 2023 06.
Article in English | MEDLINE | ID: mdl-37054651

ABSTRACT

Cyanobacteria are photosynthetic Gram-negative, oxygen evolving prokaryotes with cosmopolitan distribution. Ultraviolet radiation (UVR) and other abiotic stresses result in DNA lesions in cyanobacteria. Nucleotide excision repair (NER) pathway removes the DNA lesions produced by UVR to normal DNA sequence. In cyanobacteria, detailed knowledge about NER proteins is poorly studied. Therefore, we have studied the NER proteins in cyanobacteria. Analyses of 289 amino acids sequence from 77 cyanobacterial species have revealed the presence of a minimum of one copy of NER protein in their genome. Phylogenetic analysis of NER protein shows that UvrD has maximal rate of amino acid substitutions which resulted in increased branch length. The motif analysis shows that UvrABC proteins is more conserved than UvrD, Further, UvrA with UvrB protein interacts with each other and form stable complex which have DNA binding domain on the surface of the complex. UvrB also have DNA binding domain. Positive electrostatic potential was found in the DNA binding region, which is followed by negative and neutral electrostatic potential. Additionally, the surface accessibility values at the DNA strands of T5-T6 dimer binding site were maximal. Protein nucleotide interaction shows the strong binding of T5-T6 dimer with NER proteins of Synechocystis sp. PCC 6803. This process repairs the UV-induced DNA lesions in dark when photoreactivation is inactive. Regulation of NER proteins protect cyanobacterial genome and maintain the fitness of organism under different abiotic stresses.


Subject(s)
Cyanobacteria , Escherichia coli Proteins , DNA Helicases/metabolism , Phylogeny , Adenosine Triphosphatases/metabolism , Escherichia coli Proteins/metabolism , Ultraviolet Rays , DNA Repair , DNA Damage , DNA/metabolism , Cyanobacteria/genetics
9.
Braz. j. biol ; 83: e243910, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278525

ABSTRACT

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Subject(s)
Humans , Animals , Trypanosoma cruzi/genetics , Xeroderma Pigmentosum , DNA Damage/genetics , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Repair/genetics
10.
Braz. j. biol ; 83: 1-15, 2023. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468821

ABSTRACT

Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T. cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T. cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Subject(s)
Animals , Crosses, Genetic , DNA Damage , Gene Expression , Trypanosoma cruzi/genetics
11.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469037

ABSTRACT

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.

12.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496984

ABSTRACT

Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.


Subject(s)
DNA Repair , Xeroderma Pigmentosum Group A Protein , Humans , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group A Protein/chemistry , Xeroderma Pigmentosum Group A Protein/metabolism , Cell Nucleus/metabolism , Protein Processing, Post-Translational
13.
Mol Biol Rep ; 49(12): 12181-12192, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36190612

ABSTRACT

Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.


Subject(s)
DNA Repair , Ultraviolet Rays , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Damage/genetics , Apoptosis
14.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955506

ABSTRACT

Clinical responses to anticancer therapies in advanced soft tissue sarcoma (STS) are unluckily restricted to a small subgroup of patients. Much of the inter-individual variability in treatment efficacy is as result of polymorphisms in genes encoding proteins involved in drug pharmacokinetics and pharmacodynamics. The nucleotide excision repair (NER) system is the main defense mechanism for repairing DNA damage caused by carcinogens and chemotherapy drugs. Single nucleotide polymorphisms (SNPs) of NER pathway key genes, altering mRNA expression or protein activity, can be significantly associated with response to chemotherapy, toxicities, tumor relapse or risk of developing cancer. In the present study, in a cohort of STS patients, we performed DNA extraction and genotyping by SNP assay, RNA extraction and quantitative real-time reverse transcription PCR (qPCR), a molecular dynamics simulation in order to characterize the NER pathway in STS. We observed a severe deregulation of the NER pathway and we describe for the first time the effect of SNP rs1047768 in the ERCC5 structure, suggesting a role in modulating single-stranded DNA (ssDNA) binding. Our results evidenced, for the first time, the correlation between a specific genotype profile of ERCC genes and proficiency of the NER pathway in STS.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Case-Control Studies , DNA Repair/genetics , Humans , Neoplasm Recurrence, Local , Polymorphism, Single Nucleotide , Sarcoma/drug therapy , Sarcoma/genetics
15.
Front Oncol ; 12: 846965, 2022.
Article in English | MEDLINE | ID: mdl-35530314

ABSTRACT

Xeroderma pigmentosum complementation group C (XPC) is a DNA damage recognition protein essential for initiation of global-genomic nucleotide excision repair (GG-NER). Humans carrying germline mutations in the XPC gene exhibit strong susceptibility to skin cancer due to defective removal via GG-NER of genotoxic, solar UV-induced dipyrimidine photoproducts. However, XPC is increasingly recognized as important for protection against non-dermatologic cancers, not only through its role in GG-NER, but also by participating in other DNA repair pathways, in the DNA damage response and in transcriptional regulation. Additionally, XPC expression levels and polymorphisms likely impact development and may serve as predictive and therapeutic biomarkers in a number of these non-dermatologic cancers. Here we review the existing literature, focusing on the role of XPC in non-dermatologic cancer development, progression, and treatment response, and highlight possible future applications of XPC as a prognostic and therapeutic biomarker.

16.
Front Cell Dev Biol ; 9: 727836, 2021.
Article in English | MEDLINE | ID: mdl-34746125

ABSTRACT

Topoisomerase 2 (TOP2) inhibitors are drugs widely used in the treatment of different types of cancer. Processing of their induced-lesions create double-strand breaks (DSBs) in the DNA, which is the main toxic mechanism of topoisomerase inhibitors to kill cancer cells. It was established that the Nucleotide Excision Repair pathway respond to TOP2-induced lesions, mainly through the Cockayne Syndrome B (CSB) protein. In this paper, we further define the mechanism and type of lesions induced by TOP2 inhibitors when CSB is abrogated. In the absence of TOP2, but not during pharmacological inhibition, an increase in R-Loops was detected. We also observed that CSB knockdown provokes the accumulation of DSBs induced by TOP2 inhibitors. Consistent with a functional interplay, interaction between CSB and TOP2 occurred after TOP2 inhibition. This was corroborated with in vitro DNA cleavage assays where CSB stimulated the activity of TOP2. Altogether, our results show that TOP2 is stimulated by the CSB protein and prevents the accumulation of R-loops/DSBs linked to genomic instability.

17.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830134

ABSTRACT

Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Genomic Instability , Neoplasms/genetics , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Humans , Neoplasms/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Risk Factors , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
18.
Biomolecules ; 11(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064641

ABSTRACT

Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia-telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of UV-induced DNA damage responses in mammalian cells will be discussed.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Circadian Rhythm , DNA Damage , DNA Repair , Animals , Humans , Ultraviolet Rays
19.
Bioorg Chem ; 114: 105021, 2021 09.
Article in English | MEDLINE | ID: mdl-34120023

ABSTRACT

The identification of molecules, which could modulate protein-protein interactions (PPIs), is of primary interest to medicinal chemists. Using biophysical methods during the current study, we have screened 76 compounds (grouped into 16 mixtures) against the p8 subunit of the general transcription factor (TFIIH), which has recently been validated as an anti-cancer drug target. 10% of the tested compounds showed interactions with p8 protein in STD-NMR experiments. These results were further validated by molecular docking studies where interactions between compounds and important amino acid residues were identified, including Lys20 in the hydrophobic core of p8, and Asp42 and 43 in the ß3 strand. Moreover, these compounds were able to destabilize the p8 protein by negatively shifting the Tm (≥2 °C) in thermal shift assay. Thus, this study has identified 8 compounds which are likely negative modulators of p8 protein stability, and could be further considered as potential anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Small Molecule Libraries/chemistry , Transcription Factor TFIIH/antagonists & inhibitors , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Cell Line , Drug Screening Assays, Antitumor , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Small Molecule Libraries/metabolism , Small Molecule Libraries/toxicity , Static Electricity , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/metabolism
20.
Front Mol Biosci ; 8: 668290, 2021.
Article in English | MEDLINE | ID: mdl-34095223

ABSTRACT

The mfd (mutation frequency decline) gene was identified by screening an auxotrophic Escherichia coli strain exposed to UV and held in a minimal medium before plating onto rich or minimal agar plates. It was found that, under these conditions, holding cells in minimal (nongrowth) conditions resulted in mutations that enabled cells to grow on minimal media. Using this observation as a starting point, a mutant was isolated that failed to mutate to auxotrophy under the prescribed conditions, and the gene responsible for this phenomenon (mutation frequency decline) was named mfd. Later work revealed that mfd encoded a translocase that recognizes a stalled RNA polymerase (RNAP) at damage sites and binds to the stalled RNAP, recruits the nucleotide excision repair damage recognition complex UvrA2UvrB to the site, and facilitates damage recognition and repair while dissociating the stalled RNAP from the DNA along with the truncated RNA. Recent single-molecule and genome-wide repair studies have revealed time-resolved features and structural aspects of this transcription-coupled repair (TCR) phenomenon. Interestingly, recent work has shown that in certain bacterial species, mfd also plays roles in recombination, bacterial virulence, and the development of drug resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...