Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Neuropeptides ; 103: 102399, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38118293

ABSTRACT

OBJECTIVE: To determine whether somatostatin (SST) could be a cortico-brainstem neurotransmitter involved in producing the headache of migraine. BACKGROUND: There is evidence to support the idea that a cortico-brainstem-trigeminal nucleus neuraxis might be responsible for producing migraine headache; we have suggested that SST may be one of the neurotransmitters involved. METHODS: Rats were anesthetised and prepared for recording neurons in either the periaqueductal gray matter (PAG) or nucleus raphe magnus (NRM), as well as the trigeminal nucleus caudalis (TNC). The dura mater and facial skin were stimulated electrically or mechanically. SST, the SST agonist L054264 and the SST antagonist CYN54806 were injected intravenously, by microinjection, or by iontophoresis into the PAG or NRM. Cortical neuronal activity was provoked by cortical spreading depression (CSD) or light flash (LF) and was monitored by recording cortical blood flow (CBF). RESULTS: Intravenous injection of SST: (a) selectively decreased the responses of TNC neurons to stimulation of the dura, but not skin, for up to 5 h; (b) decreased the ongoing discharge rate of TNC neurons while simultaneously increasing the discharge rate of neurons in either brainstem nucleus and; (c) prevented, or reversed, the effect of CSD and LF on brainstem and trigeminal neuron discharge rates. CSD and LF decreased the discharge rate of neurons in both brainstem nuclei and increased the discharge rate of TNC neurons. These effects were reversed by L054264 and mimicked by CYN54806. Injections of L054264 into the PAG or NRM reduced the response of TNC neurons to dural stimulation and skin stimulation differentially, depending on the nucleus injected. Injections of CYN54806 into either brainstem nucleus potentiated the responses of TNC neurons to dural and skin stimulation, but without a marked differential effect. CONCLUSIONS: These results imply that SST could be a neurotransmitter in a pathway responsible for migraine pain.


Subject(s)
Migraine Disorders , Rats , Animals , Pain , Headache , Somatostatin/pharmacology , Neurotransmitter Agents
2.
Cephalalgia ; 42(13): 1339-1348, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35833238

ABSTRACT

BACKGROUND: We aimed to examine the effects of repetitive cortical spreading depression on the responses of nociceptive trigeminal neurons with dural afferents and characterize the role of 5-HT1B/1D and opioid receptors. METHODS: Trigeminocervical complex neurons (n = 53) responsive to nociceptive activation of the dura mater were studied in rats using electrophysiological techniques. RESULTS: A sub-population (n = 32) showed an average inhibition of dural-evoked responses of 65 ± 14% from baseline with cortical spreading depression. This response was reversed by the selective 5-HT1B/1D receptor antagonist, GR127935 (3 mg/kg; n = 6, iv), and a non-selective opioid receptor antagonist, naloxone (1.5 mg/kg; n = 6, iv), five minutes after injection. To determine the role of the nucleus raphe magnus in the trigeminocervical complex inhibitory effect, microinjection of lidocaine (2%, n = 6) or muscimol (100 mM, n = 5) into the nucleus raphe magnus was performed. There was no effect on cortical spreading depression-induced inhibition of neuronal firing in trigeminocervical complex by either. CONCLUSION: The data demonstrate that repetitive cortical spreading depression inhibits a subpopulation of dural nociceptive trigeminocervical neurons, an effect mediated by serotonin and opioid receptors. This inhibition does not involve modulation of nucleus raphe magnus neurons.


Subject(s)
Cortical Spreading Depression , Receptors, Opioid , Receptors, Serotonin, 5-HT1 , Animals , Rats , Neurons , Nociceptors , Receptors, Opioid/physiology , Receptors, Serotonin, 5-HT1/physiology
3.
Neuropharmacology ; 189: 108515, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33722649

ABSTRACT

Patients deprived of cigarettes exhibit increased pain sensitivity during perioperative periods, yet the underlying neuroanatomical and molecular bases of this hypersensitivity are unclear. The present study showed that both the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were significantly decreased in a rat model of nicotine withdrawal. These rats showed less tryptophan hydroxylase 2 (TPH2) positive neurons and reduced TPH2 expression in the nucleus raphe magnus (NRM), and thus resulted in decreased 5-hydroxytryptamine (5-HT) levels in cerebrospinal fluid. Intrathecal injection of 5-HT or NRM microinjection of TPH-overexpression adeno-associated virus alleviated nicotine withdrawal-induced hyperalgesia, whereas 5-HT receptor pharmacological blockade by methysergide (a 5-HT receptor antagonist) exacerbated hypersensitivity and diminished the difference between the two groups. Together, these data indicate that hyperalgesia after nicotine withdrawal is mediated by declined descending serotonergic pathways in the NRM. This provides a new perspective to improve the postoperative pain management of patients, especially the smokers.


Subject(s)
Down-Regulation/physiology , Hyperalgesia/metabolism , Nicotine/adverse effects , Nucleus Raphe Magnus/metabolism , Serotonergic Neurons/metabolism , Substance Withdrawal Syndrome/metabolism , Animals , Down-Regulation/drug effects , Hyperalgesia/drug therapy , Injections, Spinal , Injections, Subcutaneous , Male , Nicotine/administration & dosage , Nucleus Raphe Magnus/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/metabolism , Serotonergic Neurons/drug effects , Serotonin/administration & dosage , Serotonin/metabolism , Substance Withdrawal Syndrome/drug therapy
4.
Cephalalgia ; 41(2): 203-216, 2021 02.
Article in English | MEDLINE | ID: mdl-32990035

ABSTRACT

AIM: To use an animal model of migraine to test whether migraine headache might arise from a brainstem-trigeminal nucleus pathway. METHODS: We measured evoked and spontaneous activity of second-order trigeminovascular neurons in rats to test whether the activity of these neurons increased following the induction of cortical spreading depression or the imposition of light flash - two potential migraine triggers, or headache provokers. We then tested whether drugs that could activate, or inactivate, neurons of the nucleus raphe magnus or the periaqueductal gray matter, would affect any such increases selectively for the dura mater. RESULTS: Injection of sodium glutamate (a neuronal excitant) into these two nuclei selectively inhibited the responses of trigeminovascular second-order neurons to dura mater, but not to facial skin, stimulation. Injection of lignocaine (a local anaesthetic) into these nuclei selectively potentiated the responses of these neurons to dura, but not to facial skin, stimulation. Furthermore, injections into either nucleus of glutamate inhibited the increase in the ongoing discharge rate of these neurons produced by cortical spreading depression and light flash. CONCLUSIONS: These results provide indirect evidence that trigeminovascular nociception may be tightly controlled by these two nuclei, whereas cutaneous trigeminal sensation may be less so. These nuclei may be relays of one possible brainstem-trigeminal pathway that could mediate migraine headache. Modification of neuronal activity in these two nuclei produced by migraine (headache) triggers may lie behind the pain of a migraine attack, at least in some cases.


Subject(s)
Brain Stem , Migraine Disorders , Animals , Headache , Nociception , Rats , Trigeminal Nuclei
5.
J Oral Sci ; 62(2): 231-235, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32074544

ABSTRACT

Psychophysical stress can cause neural changes that increase nociception in the orofacial region, particularly the masseter muscle (MM). The nucleus raphe magnus (NRM), which is located in the brain stem, serves the crucial role of regulating nociception through descending modulatory pain control. However, it remains unclear if neural activities in the NRM are affected under psychophysical stress conditions. This study conducted experiments to assess (1) whether neural activity, indicated by Fos expression in an NRM that has experienced MM injury, is affected by the stress of repeated forced swim tests (FST); and (2) whether the selective serotonin reuptake inhibitor fluoxetine administered daily after an FST could affect the number of Fos-positive neurons in the NRM. Results revealed that the stress from repeated FSTs significantly increased the number of Fos-positive neurons in an NRM that had been affected by MM injury. Fluoxetine inhibited increases in the number of Fos-positive neurons in the NRM that occurred as a result of FSTs, but this was not observed in sham rats. These findings indicate that the stress from FSTs could increase nociceptive neural activity in an NRM that has experienced MM injury. This could be due, in part, to changes in serotonergic mechanisms.


Subject(s)
Nociception , Nucleus Raphe Magnus , Animals , Masseter Muscle , Neurons , Raphe Nuclei , Rats
6.
BMC Neurosci ; 20(1): 54, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31638891

ABSTRACT

BACKGROUND: The pathogenesis of medication overuse headache (MOH) involves hyperexcitability of cortical and trigeminal neurons. Derangement of the brainstem modulating system, especially raphe nuclei may contribute to this hyperexcitability. The present study aimed to investigate the involvement of the nucleus raphe magnus (NRM) in the development of cortical and trigeminal hyperexcitability in a rat model of MOH. RESULTS: Chronic treatment with acetaminophen increased the frequency of cortical spreading depression (CSD) and the number of c-Fos-immunoreactive (Fos-IR) neurons in the trigeminal nucleus caudalis (TNC). In the control group, muscimol microinjected into the NRM increased significantly the frequency of CSD-evoked direct current shift and Fos-IR neurons in the TNC. This facilitating effect was not found in rats with chronic acetaminophen exposure. In a model of migraine induced by intravenous systemic infusion of nitroglycerin (NTG), rats with chronic exposure to acetaminophen exhibited significantly more frequent neuronal firing in the TNC and greater Fos-IR than those without the acetaminophen treatment. Muscimol microinjection increased neuronal firing in the TNC in control rats, but not in acetaminophen-treated rats. The number of Fos-IR cells in TNC was not changed significantly. CONCLUSION: Chronic exposure to acetaminophen alters the function of the NRM contributing to cortical hyperexcitability and facilitating trigeminal nociception.


Subject(s)
Cerebral Cortex/physiopathology , Headache Disorders, Secondary/physiopathology , Nociception/physiology , Nucleus Raphe Magnus/physiopathology , Trigeminal Nuclei/physiopathology , Acetaminophen , Action Potentials/drug effects , Animals , Cerebral Cortex/drug effects , Disease Models, Animal , Male , Migraine Disorders/etiology , Migraine Disorders/physiopathology , Neurons/drug effects , Neurons/physiology , Nitroglycerin , Nucleus Raphe Magnus/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation , Rats, Wistar , Trigeminal Nuclei/drug effects
7.
Neurochem Res ; 44(8): 1841-1850, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31119435

ABSTRACT

Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been shown by previous studies that the nucleus raphe magnus (NRM) is closely involved in the gastrointestinal function, but its functions on the stress-induced gastric mucosal injury (SGMI) have not been thoroughly elucidated to date. Consequently, in this research, we aim to measure the expression of astrocytic glial fibrillary acidic protein (GFAP), neuronal c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the process of RWIS with immunohistochemistry and western blot methods. What is more, we detect the relation between astrocytes and neurons throughout the stress procedure and explore the regulation of the ERK1/2 signaling pathway on the activity of astrocytes and neurons after RWIS. The results indicated that all three proteins expression multiplied following peaked 3 h substantially. The SMGI, astrocyte and neuron activity were affected after the astrocytotoxin L-A-aminohexanedioic acid (L-AA) and c-fos antisense oligonucleotide (ASO) injections. After the injection of PD98059, the gastric mucosal injury, astrocyte and neuron activity significantly fell off. These results suggested that RWIS-induced activity of astrocytes and neurons in the NRM may play a significant part in gastric mucosa damage via the ERK1/2 signaling pathway.


Subject(s)
Astrocytes/metabolism , Gastric Mucosa/physiopathology , MAP Kinase Signaling System/physiology , Neurons/metabolism , Nucleus Raphe Magnus/metabolism , Animals , Flavonoids/pharmacology , Gastric Mucosa/pathology , Glial Fibrillary Acidic Protein/metabolism , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Restraint, Physical/adverse effects , Stress, Psychological/physiopathology
8.
Neuroscience ; 346: 395-402, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28147248

ABSTRACT

Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical microstimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with an attached microelectrode was implanted cranially, and daily intermittent stimulation was begun in awake, unrestrained mice. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19-25 that stimulation for >16days eliminated. Prolonged stimulation also reduced numbers of infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered genetic expression of some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising expression of myelin basic protein. Studies of restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Raphe Nuclei/physiopathology , Animals , Cytokines/metabolism , Disease Models, Animal , Electric Stimulation , Electric Stimulation Therapy , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Female , Gene Expression , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/prevention & control , Myelin Sheath/metabolism , Myelin Sheath/pathology , Spinal Cord/metabolism , Spinal Cord/pathology
9.
IBRO Rep ; 2: 72-80, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30135935

ABSTRACT

Convergent data showed that bulbo-spinal serotonergic projections exert complex modulatory influences on nociceptive signaling within the dorsal horn. These neurons are located in the B3 area which comprises the median raphe magnus (RMg) and the lateral paragigantocellular reticular (LPGi) nuclei. Because LPGi 5-HT neurons differ from RMg 5-HT neurons regarding both their respective electrophysiological properties and responses to noxious stimuli, we used anatomical approaches for further characterization of the respective spinal projections of LPGi versus RMg 5-HT neuron subgroups. Adult Sprague-Dawley rats were stereotaxically injected into the RMg or the LPGi with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). The precise location of injection sites and RMg vs LPGi spinal projections into the different dorsal horn laminae were visualized by PHA-L immunolabeling. Double immunofluorescent labeling of PHA-L and the serotonin transporter (5-HTT) allowed detection of serotonergic fibers among bulbo-spinal projections. Anterograde tracing showed that RMg neurons project preferentially into the deep laminae V-VI whereas LPGi neuron projections are confined to the superficial laminae I-II of the ipsilateral dorsal horn. All along the spinal cord, double-labeled PHA-L/5-HTT immunoreactive fibers, which represent only 5-15% of all PHA-L-immunoreactive projections, exhibit the same differential locations depending on their origin in the RMg versus the LPGi. The clear-cut distinction between dorsal horn laminae receiving bulbo-spinal serotonergic projections from the RMg versus the LPGi provides further anatomical support to the idea that the descending serotonergic pathways issued from these two bulbar nuclei might exert different modulatory influences on the spinal relay of pain signaling neuronal pathways.

10.
Cephalalgia ; 37(5): 407-417, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27155000

ABSTRACT

Aims Overuse of medications used to treat migraine headache can increase the frequency of headaches. Sudden abstinence from migraine medication can also lead to a period of withdrawal-induced headaches. The aim of this study was to examine the effect of morphine withdrawal localized to the rostral ventromedial medulla (RVM) on the activity of dura-sensitive spinal trigeminal nucleus caudalis (Vc) neurons. Methods Rats were implanted with either morphine or placebo pellets for six to seven days before the microinjection of naloxone methiodide or phosphate-buffered saline into the RVM in urethane-anesthetized animals. Dura-sensitive neurons were recorded in the Vc and the production of c-Fos-like immunoreactivity was quantified. Results In chronic morphine-treated animals, naloxone methiodide microinjections produced a significant increase both in ongoing and facial heat-evoked activity and an increase in Fos-positive neurons in the Vc and in the nucleus reticularis dorsalis, a brainstem region involved in diffuse noxious inhibitory controls. Conclusions These results indicate that activation of pronociceptive neurons in the RVM under conditions of morphine withdrawal can increase the activity of neurons that transmit headache pain. Modulation of the subnucleus reticularis dorsalis by the RVM may explain the attenuation of conditioned pain modulation in patients with chronic headache.


Subject(s)
Dura Mater/metabolism , Medulla Oblongata/metabolism , Morphine/adverse effects , Proto-Oncogene Proteins c-fos/biosynthesis , Substance Withdrawal Syndrome/metabolism , Trigeminal Nerve/metabolism , Animals , Drug Implants , Dura Mater/drug effects , Male , Medulla Oblongata/drug effects , Microinjections/methods , Morphine/administration & dosage , Rats , Rats, Sprague-Dawley , Trigeminal Nerve/drug effects
11.
Behav Brain Res ; 316: 294-304, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27616344

ABSTRACT

The electrical stimulation of the dorsolateral columns of the periaquedutal grey matter (dlPAG) or deep layers of the superior colliculus (dlSC) evokes defensive behaviours followed by an antinociceptive response. Monoaminergic brainstem reticular nuclei are suggested to comprise the endogenous pain modulatory system. The aim of the present work was to investigate the role played by 5-HT2 subfamily of serotonergic receptors of the nucleus raphe magnus (NRM) and the gigantocellularis/paragigantocellularis pars α reticular nuclei (Gi/PGiα) in the elaboration of instinctive fear-induced antinociception elicited by electrical stimulation of dlPAG or of dlSC. The nociceptive thresholds were measured by the tail-flick test in Wistar rats. The 5-HT2A/2C-serotonergic receptors antagonist ritanserin was microinjected at different concentrations (0.05, 0.5 and 5.0µg/0.2µL) either in Gi/PGiα or in NRM. The blockade of 5-HT2 receptors in both Gi/PGiα and NRM decreased the innate fear-induced antinociception elicited by electrical stimulation of the dlSC or the dlPAG. These findings indicate that serotonin is involved in the hypo-algesia induced by unconditioned fear-induced behavioural responses and the 5-HT2A/2C-serotonergic receptor subfamily in neurons situated in the Gi/PGiα complex and NRM are critically recruited in pain modulation during the panic-like emotional behaviour.


Subject(s)
Fear/physiology , Nucleus Raphe Magnus/metabolism , Periaqueductal Gray/physiology , Raphe Nuclei/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Superior Colliculi/physiology , Animals , Conditioning, Classical , Electric Stimulation , Male , Neural Pathways/physiology , Pain/pathology , Pain/physiopathology , Pain Measurement , Pain Threshold/physiology , Rats , Rats, Wistar , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology
12.
Neurosci Res ; 98: 59-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25933550

ABSTRACT

The hypothalamic paraventricular nuclei (PVN) inhibits spinal nociception. Furthermore, projections from the PVN to other structures related to pain modulation exist, but a functional interaction has not yet been fully demonstrated. As an initial approach, we show here that PVN electric stimulation with the same parameters used to induce analgesia in rats enhances c-Fos expression not only in the dorsal horn of the spinal cord but also in the nucleus raphe magnus, locus coeruleus and the periaqueductal gray area. These results suggest that a functional interaction between these structures could occur, possibly to assure a mechanism of endogenous analgesia.


Subject(s)
Locus Coeruleus/metabolism , Nucleus Raphe Magnus/metabolism , Pain/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Spinal Cord/metabolism , Animals , Electric Stimulation , Male , Rats, Wistar , Spinal Cord Dorsal Horn/metabolism
13.
Brain Res ; 1543: 165-72, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24246733

ABSTRACT

Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI.


Subject(s)
CREB-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Deep Brain Stimulation/methods , Raphe Nuclei/physiology , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Rats , Rats, Sprague-Dawley
14.
Neurobiol Learn Mem ; 105: 133-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23796633

ABSTRACT

Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla.


Subject(s)
Central Nervous System Sensitization/genetics , Conditioning, Psychological/physiology , Epigenesis, Genetic , Memory/physiology , Neuronal Plasticity/genetics , Pain/physiopathology , Animals , Aplysia , Humans , Mice , Rats , Signal Transduction
15.
Iran Biomed J ; 12(4): 203-208, 2008 10.
Article in English | MEDLINE | ID: mdl-19079538

ABSTRACT

BACKGROUND: The nucleus raphe magnus (NRM) is involved in thermoregulatory processing. There is a correlation between changes in the firing rates of the cells in the NRM and the application of the peripheral thermal stimulus. INTRODUCTION: we examined the effect of reversible inactivation and excitation of NRM on mechanisms involved in tail blood flow (TBF) regulation in hypothermia. METHODS: Hypothermia was induced in Male Wistar rats and cannula was implanted above the NRM. To evaluate the effect of nucleus inactivation on TBF, the amount of TBF was measured by Laser Doppler in hypothermic rats, before and after lidocaine microinjection into NRM. TBF was also measured after glutamate microinjection to assess the effect of nucleus excitation in hypothermic rats. RESULTS: Results indicated that after dropping TBF by hypothermia, microinjection of lidocaine into NRM significantly decreased TBF from 54.43 +- 5.7 to 46.81 +- 3.4, whereas glutamate microinjection caused a significant increase from 44.194 +- 0.6 to 98 +- 10.0 CONCLUSION: These data suggest that NRM have thermoregulatory effect in response to hypothermia.


Subject(s)
Hypothermia/physiopathology , Raphe Nuclei/physiology , Tail/blood supply , Tail/physiopathology , Animals , Male , Rats , Rats, Wistar , Thermometers
16.
Journal of Pharmaceutical Analysis ; (6): 94-96,159, 2000.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-625032

ABSTRACT

ObjectiveTo investigate the role of NRM in the antinociceptive effect of muscle spindle afferents, the influence of NRM lesion on the inhibitory effect of muscle spindle afferents on the nociceptive responses of wide dynamic range (WDR) neurons and the effects of the muscle spindle afferents on the NRM neuronal activities were observed. MethodsThe single units of WDR neurons in the spinal dorsal horn were recorded extracellularly, and the inhibitory effects of activating muscle spindle afferents by intravenous administration of succinyicholine (SCH) on the C-fibers evoked responses (C-responses) of WDR neurons were tested before and after lesion of NRM. The ef- fects of the muscle spindle afferents activated by administrating SCH on the single NRM neurons were also examined. Results①lt was found that the C-responses of WDR neurons were significantly inhibited by intravenously adminis- tration of SCH, and the inhibitory effect was reduced after lesion of NRM ;②The activities of most of the NRM neu- rons could be changed significantly by administrating SCH. According to their responses, NRM neurons could be classified into three types:excitatory, inhibitory and non-responsive neurons, and the responses were dose-depen- dent. ConclusionThese results suggest that the muscle spindle afferents evoked by SCH may activate the NRM neu- rons, which plays an important role in the antinociception of muscle spindle afferents.

17.
Article in English | WPRIM (Western Pacific) | ID: wpr-727646

ABSTRACT

Neurons in the nucleus raphe magnus are involved in descending modulation of nociceptive transmission. In this study, we attempted to investigate electrophysiological properties of the NRM neurons dissociated from the postnatal rat medulla. The NRM neurons in the coronal slices of and the dissociated neurons from the postnatal rat medullae were immunohistochemically identified using antibody against serotonin. Relatively small number of neurons were positively stained in both preparations. The positively stained neurons displayed large cell body with double or multiple neurites. Using whole-cell patch clamp configuration ionic currents were recorded from the dissociated NRM-like neurons selected by criteria such as size and shape of cell body and cell population. Two types, high- and low-threshold, of voltage-dependent calcium currents were recorded from the dissociated NRM-like neurons. Some neurons displayed both types of calcium currents, whereas others displayed only high-threshold calcium current. Voltage-dependent potassium currents were also recorded from the dissociated NRM neurons. Some neurons displayed both transient outward and delayed rectifier currents but others showed only delayed rectifier current. These results suggest that there are at least two types of calcium currents and two types of potassium currents in the dissociated NRM neurons.


Subject(s)
Animals , Rats , Calcium , Neurites , Neurons , Potassium , Serotonin
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-674550

ABSTRACT

A series of the positive cord dorsum potentials (CDP)were recorded in the dorsal surface of the spinal cord when the region of the nucleus raphy magnus (NRM)was stimulated by electricity. This CDP (NRM—CDP) consisted of three potentials. They were a Compound potential with a short time course and two slow potentials with a long time course which followed the compound one. The characteristics of the slowly potentials—NRM—CDP—1 and NRM—CDP—2 waves were analysed the parameters concerned were recorded. Therefore, a good experiment animal model and new information are provided for the further a study of the NRM action.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-569173

ABSTRACT

Immunoelectron microscopic technique was used in the present study to observe the serotonin (5-HT)-, substance P (SP)-, and leucine-enkephalin (L-Enk)-like immunoreactive ultrastructures in the nucleus raphe magnus (NRM) of the rat. 5HT-like immunoreactive (5-HT-LI) axonal terminals were found to form axosomatic, axo-dendritic, and axo-axonic synapses with non-5-HT-LI neuronal cell bodies, 5-HT-LI and non-5-HT-LI dendrites, and non-5-HT-LI axonal terminals respectively. Non-5-HT-LI axonal terminals formed axo-somatic and axo-dendritic synapses with 5-HT-LI neuronal cell bodies and dendrites. SP-LI (or L-Enk-LI) axonal terminals formed axo-somatic, axo-dendritic synapses with SP-LI (or L-Enk-LI) and non-SP-LI (or non-L-Enk-LI) neuronal cell bodies and dendrites, respectively. L-Enk-LI axonal terminals constituting axo-axonic synapses with L-Enk-LI axonal boutons were observed less frequently. The most common synaptic type made by 3 kinds immunoreactive profiles mentioned above was axo-dendritic synapses made by non-immunoreactive axonal terminals with immunoreactive dendrites. The majority of the immunoreactive axonal boutons were mainly filled by clear spherical vesicles, but sometimes were mixed with small number of flat and granular vesicles. The immunoreactive products were irregular electron-dense substances, and were located on both inner and outer surfaces of the vesicles, or on the surface of the membranous cell organelles in the cytoplasm, etc.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-569059

ABSTRACT

Using immunoelectron microscopic technique the SPergic autoregulatory synapses in the nucleus raphe magnus were studied. The results showed that there were SPlike perikarya and nerve fibers. The positive perikarya mainly were large polypolar cells. The positive fibers appeared as beaded-like and formed axodendritic synapses with SP-positive dendrites besides synapses formed with SP-negative structures. In the autoregulatory synapses the pre- and postsynaptic element were both labeled with immunoreactive products which precipitated at the periphery of small clear synaptic vesicles and the dendritic tubes, on the outer membrane of mitochondria, and in the cytoplasmic matrix. The pre- and postsynaptic membrane were symmetrical, and the synaptic vesicles aggregated near the presynaptic membrane. The synaptic cleft was about 20 nm in width and contained electron dense materials. The generality, structural characteristics and functional significance of the autoregulatory sysnapses were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...