Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 7354, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548769

ABSTRACT

Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.


Subject(s)
Hydrocortisone , Tryptophan , Animals , Tryptophan/metabolism , Dietary Supplements , Inflammation/genetics , Diet
2.
Front Immunol ; 15: 1342144, 2024.
Article in English | MEDLINE | ID: mdl-38500885

ABSTRACT

Introduction: Modern fish farming faces challenges in sourcing feed ingredients, most related with their prices, 21 availability, and specifically for plant protein sources, competition for the limited cultivation space for 22 vegetable crops. In that sense, halophytes have the added value of being rich in valuable bioactive compounds and salt tolerant. This study assessed the inclusion of non-food fractions of S. ramosissima in European seabass diets. Methods: Different levels (2.5%, 5%, and 10%) were incorporated into seabass diets, replacing wheat meal (diets ST2.5, ST5, and ST10) or without inclusion (CTRL). Experimental diets were administered to seabass juveniles (8.62 ± 0.63 g) for 34 and 62 days and subsequent inflammatory responses to a heat-inactivated Photobacterium damselae subsp. piscicida (Phdp) were evaluated in a time-course manner (4, 24, 48, and 72 h after the challenge). At each sampling point, seabass haematological profile, plasma immune parameters, and head-kidney immune-related gene expression were evaluated. Results: After both feeding periods, most parameters remained unaltered by S. ramosissima inclusion; nonetheless, seabass fed ST10 showed an upregulation of macrophage colony-stimulating factor 1 receptor 1 (mcsf1r1) and cluster of differentiation 8 (cd8ß) compared with those fed CTRL after 62 days of feeding. Regarding the inflammatory response, seabass fed ST10 showed lower plasma lysozyme levels than their counterparts fed ST2.5 and ST5 at 24 h following injection, while 4 h after the inflammatory stimulus, seabass fed ST10 presented higher numbers of peritoneal leucocytes than fish fed CTRL. Moreover, at 4 h, fish fed ST2.5, ST5, and ST10 showed a higher expression of interleukin 1ß (il1ß), while fish fed ST5 showed higher levels of ornithine decarboxylase (odc) than those fed CTRL. An upregulation of macrophage colony-stimulating factor 1 receptor 1 (mcsf1r1) and glutathione peroxidase (gpx) was also observed at 72 h in fish fed ST10 or ST5 and ST10 compared with CTRL, respectively. Discussion: In conclusion, incorporating up to 10% of the non-food fraction S. ramosissima in feed did not compromise seabass growth or immune status after 62 days, aligning with circular economy principles. However, S. ramosissima inclusion improved the leucocyte response and upregulated key immune-related genes in seabass challenged with an inactivated pathogen.


Subject(s)
Bass , Photobacterium , Animals , Interleukin-1 Receptor-Like 1 Protein , Macrophage Colony-Stimulating Factor , Diet
3.
J Dairy Sci ; 107(2): 1211-1227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37730173

ABSTRACT

The objective of this experiment was to examine the effects of supplementation and dose of rumen-protected choline (RPC) on markers of inflammation and metabolism in liver and mammary tissue during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC (20.4 g/d of choline ions; CHOL45), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30), or no RPC (CON) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 µg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM (CHOL45, n = 9; CHOL45-LPS, n = 9; CHOL30, n = 11; CHOL30-LPS, n = 10; CON, n = 10; CON-LPS, n = 9). Hepatic and mammary tissues were collected from all cows on d 17 postpartum. Hepatic and mammary tissues were collected at ∼7.5 and 8 h, respectively, after the LPS challenge. An additional mammary biopsy was conducted on LPS-challenged cows (CHOL45-LPS, CHOL30-LPS, and CON-LPS) at 48 h postchallenge. Hepatic and mammary RNA copy numbers were quantified for genes involved in apoptosis, methylation, inflammation, oxidative stress, and mitochondrial function using NanoString technology. Targeted metabolomics was conducted only on mammary tissue samples (both 8 and 48 h biopsies) to quantify 143 metabolites including choline metabolites, amino acids, biogenic amines and derivatives, organic acids, carnitines, and glucose. Hepatic IFNG was greater in CHOL45 as compared with CON in unchallenged cows, suggesting an improvement in type 1 immune responses. Hepatic CASP3 was greater in CHOL45-LPS as compared with CON-LPS, suggesting greater apoptosis. Mammary IL6 was reduced in CHOL30-LPS cows as compared with CHOL45-LPS and CON-LPS (8 and 48 h). Mammary GPX4 and COX5A were reduced in CHOL30-LPS as compared with CON-LPS (8 h), and SDHA was reduced in CHOL30-LPS as compared with CON-LPS (8 and 48 h). Both CHOL30-LPS and CHOL45-LPS cows had lesser mammary ATP5J than CON-LPS, suggesting that dietary RPC supplementation altered mitochondrial function following LPS challenge. Treatment did not affect mammary concentrations of any metabolite in unchallenged cows, and only 4 metabolites were affected by dietary RPC supplementation in LPS-challenged cows. Mammary concentrations of isobutyric acid and 2 acyl-carnitines (C4:1 and C10:2) were reduced in CHOL45-LPS as compared with CHOL30-LPS and CON-LPS. Taken together, reductions in medium- and short-chain carnitines along with an increase in long-chain carnitines in mammary tissue from CHOL45-LPS cows suggests less fatty acid entry into the ß oxidation pathway. Although the intramammary LPS challenge profoundly affected markers for inflammation and metabolism in liver and mammary tissue, dietary RPC supplementation had minimal effects on inflammatory markers and the mammary metabolome.


Subject(s)
Cattle Diseases , Lipopolysaccharides , Female , Cattle , Animals , Lipopolysaccharides/pharmacology , Choline/metabolism , Dietary Supplements , Lactation , Rumen/metabolism , Milk/chemistry , Diet/veterinary , Liver/metabolism , Inflammation/veterinary , Inflammation/metabolism , Ions/analysis , Ions/metabolism , Ions/pharmacology , Cattle Diseases/metabolism
4.
J Nutr Biochem ; 122: 109456, 2023 12.
Article in English | MEDLINE | ID: mdl-37788725

ABSTRACT

Diets high in fruit and vegetables are perceived to be beneficial for intestinal homeostasis, in health as well as in the context of inflammatory bowel diseases (IBDs). Recent breakthroughs in the field of immunology have highlighted the importance of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) as a critical regulator of mucosal immunity, including the intestinal trafficking of CD4+ helper T cells, an immune cell subset implicated in a wide range of homeostatic and pathogenic processes. Specifically, the AhR has been shown to directly regulate the expression of the chemoattractant receptor G Protein-Coupled Receptor 15 (GPR15) on CD4+ T cells. GPR15 is an important gut homing marker whose expression on CD4+ T cells in the peripheral circulation is elevated in patients suffering from ulcerative colitis, raising the possibility that, in this setting, the beneficial effect of a diet rich in fruits and vegetables may be mediated through the modulation of GPR15 expression. To address this, we screened physiologically-relevant polyphenol and glucosinolate metabolites for their ability to affect both AhR activity and GPR15 expression. Our complementary approach and associated findings suggest that polyphenol and glucosinolate metabolites can regulate GPR15 expression on human CD4+ T cells in an AhR-dependent manner.


Subject(s)
CD4-Positive T-Lymphocytes , Colitis, Ulcerative , Humans , CD4-Positive T-Lymphocytes/metabolism , Glucosinolates/pharmacology , Receptors, Aryl Hydrocarbon , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide
5.
Arch. latinoam. nutr ; 73(3): 222-232, sept 2023.
Article in Spanish | LILACS, LIVECS | ID: biblio-1518453

ABSTRACT

Los trastornos autoinmunes representan una familia de al menos 80 condiciones diferentes que surgen de una respuesta aberrante del sistema inmunológico resultando finalmente en la destrucción de tejidos y órganos específicos del cuerpo. Es importante destacar que durante las últimas tres décadas los estudios epidemiológicos han proporcionado evidencia de un aumento constante en la incidencia y prevalencia de trastornos autoinmunes. En los últimos años, varios estudios han demostrado que la vitamina D y los ácidos grasos poliinsaturados (AGPs) omega-3 ejercen propiedades inmunomoduladoras y antiinflamatorias sinérgicas que pueden aprovecharse positivamente para la prevención y el tratamiento de trastornos autoinmunes. En este sentido, el reciente ensayo clínico denominado VITAL (ensayo de vitamina D y omega 3); un estudio a gran escala, aleatorizado, doble ciego, controlado con placebo encontró que la suplementación conjunta de vitamina D y AGPs omega-3 (VIDOM) puede reducir la incidencia de enfermedades autoinmunes. En esta revisión de la literatura, resumimos los mecanismos moleculares detrás de las propiedades inmunomoduladoras y antiinflamatorias de la vitamina D y los AGPs omega-3, así como la posible interacción bidireccional entre el metabolismo de la vitamina D y el metabolismo de los AGPs omega-3 que justifica la co- suplementación VIDOM en trastornos autoinmunes(AU)


Autoimmune disorders represent a family of at least 80 different conditions that arise from an aberrant immune system response, which ultimately results in the destruction of specific body tissues and organs. It is important to highlight that during the last three decades epidemiological studies have provided evidence of a steady increase in the incidence and prevalence of autoimmune disorders. In recent years, several studies have shown that vitamin D and omega-3 polyunsaturated fatty acids (PUFAs) exert synergistic immunomodulatory and anti-inflammatory properties that can be positively harnessed for the prevention and treatment of autoimmune disorders. In this sense, the recent clinical trial called VITAL (Vitamin D and Omega 3 trial) - a large, randomized, double-blind, placebo- controlled study - found that co-supplementation of vitamin D and omega-3 PUFAs (VIDOM) can reduce the incidence of autoimmune diseases. In this literature review, we summarize the molecular mechanisms behind the immunomodulatory and anti-inflammatory properties of vitamin D and omega-3 PUFAs, as well as the possible bidirectional interaction between vitamin D metabolism and omega-3 PUFA metabolism that justifies VIDOM co- supplementation in autoimmune disorders(AU)


Subject(s)
Autoimmune Diseases , Vitamin D , Fatty Acids, Omega-3 , Epidemiology , Immunomodulation
6.
Eur J Nutr ; 62(6): 2399-2413, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37106253

ABSTRACT

PURPOSE: To study the effects of feeding docosahexaenoic acid (DHA, derived from novel canola oil), with same amount of arachidonic acid (ARA), supplemented diet to lactating dams on the immune system development of suckled offspring using a T helper type-2 (Th2)-dominant BALB/c mouse. METHODS: Dams received nutritionally complete control (no ARA or DHA) or DHA + ARA diet (1% DHA and 1% ARA of total fatty acids) from 5 days pre-parturition to the end of 3-week suckling period. After euthanization, relevant tissues were collected to study fatty acids, splenocyte phenotype and function (ex vivo cytokines with/without lipopolysaccharide (LPS, bacterial challenge) or phorbol myristate acetate + ionomycin (PMAi) stimulation). RESULTS: Feeding dams a DHA diet significantly increased the mammary gland milk phospholipid concentration of DHA and ARA. This resulted in 60% higher DHA levels in splenocyte phospholipids of the pups although ARA levels showed no difference. In dams fed DHA diet, significantly higher proportion of CD27+ cytotoxic T cell (CTL) and CXCR3+ CCR6- Th (enriched in Th1) were observed than control, but there were no differences in the splenocyte function upon PMAi (non-specific lymphocyte stimulant) stimulation. Pups from DHA-fed dams showed significantly higher IL-1ß, IFN-γ and TNF-α (inflammatory cytokines) by LPS-stimulated splenocytes. This may be due to higher proportion of CD86+ macrophages and B cells (all p's < 0.05) in these pups, which may influence T cell polarization. CONCLUSION: Plant-based source of DHA in maternal diet resulted in higher ex vivo production of inflammatory cytokines by splenocytes due to change in their phenotype, and this can skew T cell towards Th1 response in a Th2-dominant BALB/c mouse.


Subject(s)
Docosahexaenoic Acids , Hypersensitivity , Animals , Female , Mice , Docosahexaenoic Acids/pharmacology , Arachidonic Acid , Rapeseed Oil , Lactation , Lipopolysaccharides/pharmacology , Dietary Supplements , Diet , Cytokines , Fatty Acids/pharmacology , Phospholipids , Immune System
7.
Immunity ; 55(12): 2454-2469.e6, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36473469

ABSTRACT

Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.


Subject(s)
Allergens , Food Hypersensitivity , Humans , Immunoglobulin G , Antibody Formation , Epitopes , Dietary Proteins
8.
Br J Nutr ; : 1-6, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35912674

ABSTRACT

Compared with an omnivorous Western diet, plant-based diets containing mostly fruits, vegetables, grains, legumes, nuts and seeds, with restricted amounts of foods of animal origin, are associated with reduced risk and severity of COVID-19. Additionally, inflammatory immune responses and severe acute respiratory symptoms of COVID-19, including pulmonary oedema, shortness of breath, fever and nasopharyngeal infections, are associated with Na toxicity from excessive dietary Na. High dietary Na is also associated with increased risks of diseases and conditions that are co-morbid with COVID-19, including chronic kidney disease, hypertension, stroke, diabetes and obesity. This article presents evidence that low dietary Na potentially mediates the association of plant-based diets with COVID-19 prevention. Processed meats and poultry injected with sodium chloride contribute considerable amounts of dietary Na in the Western diet, and the avoidance or reduction of these and other processed foods in whole-food plant-based (WFPB) diets could help lower overall dietary Na intake. Moreover, high amounts of K in plant-based diets increase urinary Na excretion, and preagricultural diets high in plant-based foods were estimated to contain much lower ratios of dietary Na to K compared with modern diets. Further research should investigate low Na in WFPB diets for protection against COVID-19 and co-morbid conditions.

9.
Front Med (Lausanne) ; 9: 923502, 2022.
Article in English | MEDLINE | ID: mdl-35783654

ABSTRACT

Severe COVID-19 is characterized by profound CD8+ T-cell dysfunction, which cannot be specifically treated to date. We here investigate whether metabolic CD8+ T-cell reprogramming by ketone bodies could be a promising strategy to overcome the immunoparalysis in COVID-19 patients. This approach was triggered by our recent pioneering study, which has provided evidence that CD8+ T-cell capacity in healthy subjects could be significantly empowered by a Ketogenic Diet. These improvements were achieved by immunometabolic rewiring toward oxidative phosphorylation. We here report similar strengthening of CD8+ T cells obtained from severely diseased COVID-19 patients: Flow cytometry and ELISA revealed elevated cytokine expression and secretion (up to + 24%) upon ketone treatment and enhanced cell lysis capacity (+ 21%). Metabolic analyses using Seahorse technology revealed upregulated mitochondrial respiratory chain activity (+ 25%), enabling both superior energy supply (+ 44%) and higher mitochondrial reactive oxygen species signaling. These beneficial effects of ketones might represent evolutionary conserved mechanisms to strengthen human immunity. Our findings pave the road for metabolic treatment studies in COVID-19.

10.
Nutrients ; 14(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35807927

ABSTRACT

Perinatal hypoxia ischaemia (PHI), acute and chronic, may be associated with considerable adverse outcomes in the foetus and neonate. The molecular and cellular mechanisms of injury and repair associated with PHI in the perinate are not completely understood. Increasing evidence is mounting for the role of nutrients and bioactive food components in immune development, function and repair in PHI. In this review, we explore current concepts around the neonatal immune response to PHI with a specific emphasis on the impact of nutrition in the mother, foetus and neonate.


Subject(s)
Hypoxia , Nutritional Status , Female , Humans , Infant, Newborn , Ischemia , Pregnancy
11.
J Nutr ; 152(9): 2165-2178, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35648474

ABSTRACT

BACKGROUND: A T helper type-2 (Th2) skewed immune response is associated with food allergies. DHA and arachidonic acid (ARA) have been shown to promote oral tolerance (OT) in healthy rodents. OBJECTIVES: We studied the effect of combined ARA + DHA supplementation during the suckling and weaning periods on OT and immune system development in Th2-skewed Brown Norway rat offspring. METHODS: Dams were fed ARA + DHA (0.45% ARA, 0.8% DHA wt/wt of total fat; n = 10) as a suckling period diet (SPD) or control SPD (0% ARA, 0% DHA, n = 8). At 3 wk, offspring from each SPD group received ARA + DHA (0.5% ARA, 0.5% DHA wt/wt of total fat) weaning diet (WD), or control until 8 wk. For OT, offspring were orally exposed to either ovalbumin (OVA) or placebo between 21 and 25 d, followed by systemic immunization with OVA + adjuvant at 7 wk. Primary outcomes, ex vivo cytokine production by splenocytes and plasma OVA-specific Igs, were analyzed using a 3-way ANOVA. RESULTS: At 8 wk, despite no lasting effect of SPD on splenocytes fatty acids, ARA + DHA WD resulted in 2× higher DHA in splenocyte phospholipid compositions without affecting ARA. OT development was observed in OVA-exposed groups with 15% lower plasma OVA-IgE (P = 0.04) and 35% lower OVA-IgG1 (P = 0.01) than placebo. ARA + DHA SPD resulted in 35% lower OVA-IgG1 and iIL-6 (P = 0.04) when stimulated with LPS, and a higher proportion of mature B cells (OX12+, P = 0.0004, and IgG+, P = 0.008). ARA + DHA WD resulted in 20% higher Th1 cytokines (TNF-α and IFN-γ) production to lymphocyte stimulant and higher splenocyte proportion of CD45RA+ (pan-B cells) and OX6+ (dendritic cells) than control WD (P values < 0.05). CONCLUSIONS: Combined supplementation of ARA and DHA is beneficial for OT development, especially in the suckling period. Further, ARA + DHA supplementation can also counteract the Th2-skewed immunity of Brown Norway rat offspring through higher Th1 cytokine production by lymphocytes.


Subject(s)
Cytokines , Docosahexaenoic Acids , Animals , Arachidonic Acid/pharmacology , Dietary Supplements , Immune System , Immunoglobulin G , Ovalbumin , Rats
12.
J Nutr ; 152(8): 1991-2002, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35679100

ABSTRACT

BACKGROUND: Although dietary DHA alleviates Toll-like receptor (TLR)-associated chronic inflammation in fish, the underlying mechanism is not well understood. OBJECTIVES: This study aimed to explore the role of Tlr22 in the innate immunity of large yellow croaker and investigate the anti-inflammatory effects of DHA on Tlr22-triggered inflammation. METHODS: Head kidney-derived macrophages of croaker and HEK293T cells were or were not pretreated with 100 µM DHA for 10 h prior to polyinosinic-polycytidylic acid (poly I:C) stimulation. We executed qRT-PCR, immunoblotting, and lipidomic analysis to examine the impact of DHA on Tlr22-triggered inflammation and membrane lipid composition. In vivo, croakers (12.03 ± 0.05 g) were fed diets containing 0.2% [control (Ctrl)], 0.8%, and 1.6% DHA for 8 wk before injection with poly I:C. Inflammatory genes expression and rafts-related lipids and protein expression were measured in the head kidney. Data were analyzed by ANOVA or Student t test. RESULTS: The activation of Tlr22 by poly I:C induced inflammation, and DHA diminished Tlr22-targeted inflammatory gene expression by 56-73% (P ≤ 0.05). DHA reduced membrane sphingomyelin (SM) and SFA-containing phosphatidylcholine (SFA-PC) contents, as well as lipid raft marker caveolin 1 amounts. Furthermore, lipid raft disruption suppressed Tlr22-induced Nf-κb and interferon h activation and p65 nuclear translocation. In vivo, expression of Tlr22 target inflammatory genes was 32-64% lower in the 1.6% DHA group than in the Ctrl group upon poly I:C injection (P ≤ 0.05). Also, the 1.6% DHA group showed a reduction in membrane SM and SFA-PC contents, accompanied by a decrease in caveolin 1 amounts, compared with the Ctrl group. CONCLUSIONS: The activation of Tlr22 signaling depends on lipid rafts, and DHA ameliorates the Tlr22-triggered inflammation in both head kidney and head kidney-derived macrophages of croaker partially by altering membrane SMs and SFA-PCs that are required for lipid raft organization.


Subject(s)
Docosahexaenoic Acids , Perciformes , Animals , Caveolin 1/metabolism , Caveolin 1/pharmacology , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Membrane Microdomains/metabolism , Phosphatidylcholines/metabolism , Poly I/metabolism , Poly I/pharmacology , Sphingomyelins/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
13.
Front Nutr ; 9: 878382, 2022.
Article in English | MEDLINE | ID: mdl-35529463

ABSTRACT

Modern industrial practices have transformed the human diet over the last century, increasing the consumption of processed foods. Dietary imbalance of macro- and micro-nutrients and excessive caloric intake represent significant risk factors for various inflammatory disorders. Increased ingestion of food additives, residual contaminants from agricultural practices, food processing, and packaging can also contribute deleteriously to disease development. One common hallmark of inflammatory disorders, such as autoimmunity and allergies, is the defect in anti-inflammatory regulatory T cell (Treg) development and/or function. Treg represent a highly heterogeneous population of immunosuppressive immune cells contributing to peripheral tolerance. Tregs either develop in the thymus from autoreactive thymocytes, or in the periphery, from naïve CD4+ T cells, in response to environmental antigens and cues. Accumulating evidence demonstrates that various dietary factors can directly regulate Treg development. These dietary factors can also indirectly modulate Treg differentiation by altering the gut microbiota composition and thus the production of bacterial metabolites. This review provides an overview of Treg ontogeny, both thymic and peripherally differentiated, and highlights how diet and gut microbiota can regulate Treg development and function.

14.
Front Immunol ; 13: 849752, 2022.
Article in English | MEDLINE | ID: mdl-35493529

ABSTRACT

The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1µg of outer membrane vesicles), TP (SHK-1 stimulated with 1µg of total protein extract) and LPS (SHK-1 stimulated with 1µg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules , Salmon , Animals , Cell Line , Lipopolysaccharides/pharmacology , Macrophages , Micronutrients , Piscirickettsia
15.
Gastroenterol Rep (Oxf) ; 10(1): goac008, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291443

ABSTRACT

Organismal survival depends on a well-balanced immune system and maintenance of host-microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host-microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.

16.
Front Nutr ; 8: 769293, 2021.
Article in English | MEDLINE | ID: mdl-34790691

ABSTRACT

Background: Dietary long chain polyunsaturated fatty acids (LCPUFA) such as arachidonic acid (ARA) and docosahexaenoic acid (DHA) play an important role in the development of the infant immune system. The role of LCPUFA in the T helper type 2 (Th2) biased immune system is unknown. We aimed to understand the effect of feeding LCPUFA during suckling and post-weaning on immune system development in Th2 bias Brown Norway rat offspring. Methods: Brown Norway dams were randomly assigned to nutritionally adequate maternal diet throughout the suckling period (0-3 weeks), namely, control diet (0% ARA, 0% DHA; n= 8) or ARA + DHA (0.45% ARA, 0.8% DHA; n = 10). At 3 weeks, offspring from each maternal diet group were randomized to either a control (0% ARA, 0% DHA; n = 19) or ARA+DHA post-weaning (0.5% ARA, 0.5% DHA; n = 18) diet. At 8 weeks, offspring were killed, and tissues were collected for immune cell function and fatty acid composition analyses. Results: ARA + DHA maternal diet resulted in higher (p < 0.05) DHA composition in breast milk (4×) without changing ARA levels. This resulted in more mature adaptive immune cells in spleen [T regulatory (Treg) cells and B cells], mesenteric lymph nodes (MLN, lower CD45RA+), and Peyer's patches (PP; higher IgG+, B cells) in the ARA+DHA group offspring at 8 weeks. ARA+DHA post-weaning diet (3-8 weeks) resulted in 2 × higher DHA in splenocyte phospholipids compared to control. This also resulted in higher Th1 cytokines, ~50% higher TNF-α and IFNγ, by PMAi stimulated splenocytes ex vivo, with no differences in Th2 cytokines (IL-4, IL-13, and IL-10) compared to controls. Conclusion: Feeding dams a diet higher in DHA during the suckling period resulted in adaptive immune cell maturation in offspring at 8 weeks. Providing ARA and DHA during the post-weaning period in a Th2 biased Brown Norway offspring model may support Th1 biased immune response development, which could be associated with a lower risk of developing atopic diseases.

17.
Nutrients ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34836210

ABSTRACT

Nutrition and immunity are closely related, and the immune system is composed of the most highly energy-consuming cells in the body. Much of the immune system is located within the GI tract, since it must deal with the huge antigenic load introduced with food. Moreover, the incidence of immune-mediated diseases is elevated in Westernized countries, where "transition nutrition" prevails, owing to the shift from traditional dietary patterns towards Westernized patterns. This ecological correlation has fostered increasing attempts to find evidence to support nutritional interventions aimed at managing and reducing the risk of immune-mediated diseases. Recent studies have described the impacts of single nutrients on markers of immune function, but the knowledge currently available is not sufficient to demonstrate the impact of specific dietary patterns on immune-mediated clinical disease endpoints. If nutritional scientists are to conduct quality research, one of many challenges facing them, in studying the complex interactions between the immune system and diet, is to develop improved tools for investigating eating habits in the context of immunomediated diseases.


Subject(s)
Autoimmune Diseases/etiology , Diet , Autoimmune Diseases/microbiology , Diet, Mediterranean , Diet, Western , Gastrointestinal Microbiome , Humans , Patient Compliance
18.
Ecol Evol ; 11(15): 10090-10097, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367561

ABSTRACT

Immune functions are costly, and immune investment is usually dependent on the individual's condition and resource availability. For phytophagous insects, host plant quality has large effects on performance, for example growth and survival, and may also affect their immune function. Polyphagous insects often experience a large variation in quality among different host plant species, and their immune investment may thus vary depending on which host plant species they develop on. Larvae of the polyphagous moth Spodoptera littoralis have previously been found to exhibit density-dependent prophylaxis as they invest more in certain immune responses in high population densities. In addition, the immune response of S. littoralis has been shown to depend on nutrient quality in experiments with artificial diet. Here, I studied the effects of natural host plant diet and larval density on a number of immune responses to understand how host plant species affects immune investment in generalist insects, and whether the density-dependent prophylaxis could be mediated by host plant species. While host plant species in general did not mediate the density-dependent immune expression, particular host plant species was found to increase larval investment in certain functions of the immune system. Interestingly, these results indicate that different host plants may provide a polyphagous species with protection against different kinds of antagonisms. This insight may contribute to our understanding of the relationship between preference and performance in generalists, as well as having applied consequences for sustainable pest management.

19.
J Agric Food Chem ; 69(31): 8625-8633, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34338516

ABSTRACT

The ligand-activated aryl hydrocarbon receptor (AhR) is an important molecular regulator of immune function, whose activity can be modulated by dietary glucosinolate- and tryptophan-derived metabolites. In contrast, the potential use of polyphenols as dietary regulators of AhR-dependent immunity remains unclear. In this perspective, we discuss how cellular metabolism may alter the net effect of polyphenols on AhR, thus potentially reconciling some of the conflicting observations reported in the literature. We further provide a methodological roadmap, across the fields of immunology, metabolomics, and gut microbial ecology, to explore the potential effects of polyphenol-rich diets on AhR-regulated immune function in humans.


Subject(s)
Immunity , Polyphenols , Receptors, Aryl Hydrocarbon , Humans , Ligands , Polyphenols/pharmacology , Receptors, Aryl Hydrocarbon/genetics , Tryptophan
20.
Front Vet Sci ; 8: 675712, 2021.
Article in English | MEDLINE | ID: mdl-34447799

ABSTRACT

In its early life a kitten faces many significant events including separation from its mother, re-homing and vaccination. The kitten is also slowly adapting to their post-weaning diet. Recent advances in companion animal nutrition have indicated that functional ingredients such as colostrum can help support the immune system and gastrointestinal health. Here we report for the first time the effect of feeding a diet containing 0.1% spray dried bovine colostrum (BC) to growing kittens on gut-associated lymphoid (GALT) tissue responses, systemic immune responses, and on intestinal microbiota stability. BC supplementation induced increased faecal IgA expression, and a faster and stronger antibody response to a rabies vaccine booster, indicative of better localised and systemic immune function, respectively. BC supplementation also helped to maintain kittens' intestinal microbiota stability in the face of a mildly challenging life event. These results show that BC supplementation can help strengthen the immune system and enhance the gut microbiota stability of growing kittens.

SELECTION OF CITATIONS
SEARCH DETAIL
...