Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 54(24): 16147-16155, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33269914

ABSTRACT

Providing safe and reliable sanitation services to the billions of people currently lacking them will require a multiplicity of approaches. Improving onsite wastewater treatment to standards enabling water reuse would reduce the need to transport waste and fresh water over long distances. Here, we describe a compact, automated system designed to treat the liquid fraction of blackwater for onsite water reuse that combines cross-flow ultrafiltration, activated carbon, and electrochemical oxidation. In laboratory testing, the system consistently produces effluent with 6 ≤ pH ≤ 9, total suspended solids (TSS) < 30 mg L-1, and chemical oxygen demand (COD) < 150 mg L-1. These effluent parameters were achieved across a wide range of values for influent TSS (61-820 mg L-1) and COD (384-1505 mg L-1), demonstrating a robust system for treating wastewater of varying strengths. A preliminary techno-economic analysis (TEA) was conducted to elucidate primary cost drivers and prioritize research and development pathways toward commercial feasibility. The ultrafiltration system is the primary cost driver, contributing to >50% of both the energy and maintenance costs. Several scenario parameters showed an outsized impact on costs relative to technology parameters. Specific technological improvements for future prototype development are discussed.


Subject(s)
Waste Disposal, Fluid , Water Purification , Biological Oxygen Demand Analysis , Humans , Laboratories , Wastewater
2.
Water Res ; 169: 115241, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31698150

ABSTRACT

This study examined whether the accumulation of nitrogen (legacy nitrogen) within and surrounding leaching pools for onsite wastewater treatment may act as a source of nitrogen contamination to groundwater upon changes to the quantity and/or composition of the influent to the pool. In this study, one concrete leaching pool with neutral pH (A, pH 6.9) and one leaching pool after acid washing (B, pH 3.7) were selected to examine the quantity and composition of legacy nitrogen in the surrounding soil, as well as evaluate the potential release of this nitrogen under two environmentally relevant leaching scenarios: (i) the concrete leaching pool serves as the final discharge unit for aerobic treatment unit (ATU) effluent; (ii) extreme weather events (flash flood/heavy rains) act to increase the quantity and dilute the composition of flow to the pool. Core sample analysis showed that organic nitrogen accounts for the majority (97.3-99.7%) of the total nitrogen (TN) at site A (4.1 ±â€¯0.6 mg N/g soil) and site B (3.0 ±â€¯0.4 mg N/g soil); while ammonium was the major form of inorganic nitrogen present at the sites. The TN accumulated under the two leaching pools was equivalent to approximately 17-39 days of nitrogen loading to the system. pH had a significant impact on the mass of TN leached from the soil, while no significant difference in leached TN was observed for the two leaching scenarios. The amount of TN leached from the soil matrix was not affected by the flow rate (18.6 mL/d in scenario i vs. 547.2 mL/d in scenario ii) or flow pattern (intermittent dosing vs. continuous flow). The quantity of TN leached from soils in both scenario (i) and (ii) was low and accounted for 2.6-8.9% of the total nitrogen in the soil.


Subject(s)
Soil Pollutants , Soil , Nitrogen , Rain , Wastewater
3.
Water Res ; 162: 482-491, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31306951

ABSTRACT

The ability of lateral flow sand filters, used as on-site wastewater treatment systems (OWTS), to remove antibiotic resistance genes (ARGs), antibiotic resistant bacteria (ARB), and other relevant genetic markers (HF183, 16S rRNA, and int1) was assessed. Municipal wastewater was settled in a septic tank prior to loading into six pilot-scale lateral flow sand filters comprised of three different sand media types, at 5 and 30% slopes. The sand filters were sampled bi-weekly for: 9 ARGs and 3 other complimentary gene markers (sul1, sul2, qnrS, tetO, ermB, blaTEM, blaCTX-M, mecA, vanA, int1, HF183, 16S rRNA), and conventional microbial and water quality indicators, from July to November in 2017, and four times in the summer of 2018. The sand filters were observed to attenuate 7 of the ARGs to mostly below 2 log gene copies per mL. Log reductions ranging from 2.9 to 5.4 log were observed for the removal of absolute abundances of ARGs from septic tank effluent in 5 of the 6 sand filters. The fine-grained filter on the 5% slope did not perform as well for ARG attenuation due to hydraulic failure. The apportionment of cell-associated versus cell-free DNA was determined for the gene markers and this indicated that the genes were primarily carried intracellularly. Average log reductions of ARB with resistance to either sulfamethoxazole, erythromycin, or tetracycline were approximately 2.3 log CFU per mL within the filters compared to the septic tank effluent. This field study provides in-depth insights into the attenuation of ARB, ARGs, and their genetic compartmentalization in variably saturated sand OWTS. Overall, this type of OWTS was found to pose little risk of antimicrobial resistance contamination spread into surrounding environments when proper hydraulic function was maintained.


Subject(s)
Anti-Bacterial Agents , Wastewater , Drug Resistance, Microbial , Genes, Bacterial , RNA, Ribosomal, 16S , Waste Disposal, Fluid
4.
Water Res ; 151: 456-467, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30640159

ABSTRACT

Septic systems inherently rely on microbial communities in the septic tank and leach field to attenuate pollution from household sewage. Operating conditions of septic leach field systems, especially the degree of water saturation, are likely to impact microbial biogeochemical cycling, including carbon (C), nitrogen (N), and phosphorus (P), as well as greenhouse gas (GHG) emissions to the atmosphere. To study the impact of flooding on microbial methane (CH4) and nutrient cycling, two leach field soil columns were constructed. One system was operated as designed and the other was operated in both flooded and well-maintained conditions. CH4 emissions were significantly higher in flooded soils (with means between 0.047 and 0.33 g CH4 m-2 d-1) as compared to well-drained soils (means between -0.0025 and 0.004 g CH4 m-2 d-1). Subsurface CH4 profiles were also elevated under flooded conditions and peaked near the wastewater inlet. Gene abundances of mcrA, a biomarker for methanogens, were also greatest near the wastewater inlet. In contrast, gene abundances of pmoA, a biomarker for methanotrophs, were greatest in surface soils at the interface of CH4 produced subsurface and atmospheric oxygen. 16S rRNA, mcrA, and pmoA amplicon library sequencing revealed microbial community structure in the soil columns differed from that of the original soils and was driven largely by CH4 fluxes and soil VWC. Additionally, active microbial populations differed from those present at the gene level. Flooding did not appear to affect N or P removals in the soil columns (between 75 and 99% removal). COD removal was variable throughout the experiment, and was negatively impacted by flooding. Our study shows septic system leach field soils are dynamic environments where CH4 and nutrients are actively cycled by microbial populations. Our results suggest proper siting, installation, and routine maintenance of leach field systems is key to reducing the overall impact of these systems on water and air quality.


Subject(s)
Methane , Microbiota , Nutrients , RNA, Ribosomal, 16S , Soil
SELECTION OF CITATIONS
SEARCH DETAIL