Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rheumatology (Oxford) ; 60(SI): SI37-SI50, 2021 10 09.
Article in English | MEDLINE | ID: mdl-33725121

ABSTRACT

OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.


Subject(s)
Autoimmune Diseases/mortality , Autoimmune Diseases/virology , COVID-19/mortality , Hospitalization/statistics & numerical data , Influenza, Human/mortality , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Cohort Studies , Female , Humans , Influenza, Human/immunology , Male , Middle Aged , Prevalence , Prognosis , Republic of Korea/epidemiology , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
2.
J Biomed Inform ; 102: 103363, 2020 02.
Article in English | MEDLINE | ID: mdl-31866433

ABSTRACT

Algorithms for identifying patients of interest from observational data must address missing and inaccurate data and are desired to achieve comparable performance on both administrative claims and electronic health records data. However, administrative claims data do not contain the necessary information to develop accurate algorithms for disorders that require laboratory results, and this omission can result in insensitive diagnostic code-based algorithms. In this paper, we tested our assertion that the performance of a diagnosis code-based algorithm for chronic kidney disorder (CKD) can be improved by adding other codes indirectly related to CKD (e.g., codes for dialysis, kidney transplant, suspicious kidney disorders). Following the best practices from Observational Health Data Sciences and Informatics (OHDSI), we adapted an electronic health record-based gold standard algorithm for CKD and then created algorithms that can be executed on administrative claims data and account for related data quality issues. We externally validated our algorithms on four electronic health record datasets in the OHDSI network. Compared to the algorithm that uses CKD diagnostic codes only, positive predictive value of the algorithms that use additional codes was slightly increased (47.4% vs. 47.9-48.5% respectively). The algorithms adapted from the gold standard algorithm can be used to infer chronic kidney disorder based on administrative claims data. We succeeded in improving the generalizability and consistency of the CKD phenotypes by using data and vocabulary standardized across the OHDSI network, although performance variability across datasets remains. We showed that identifying and addressing coding and data heterogeneity can improve the performance of the algorithms.


Subject(s)
Electronic Health Records , Medical Informatics , Algorithms , Humans , Phenotype , Predictive Value of Tests
3.
Healthc Inform Res ; 22(1): 54-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26893951

ABSTRACT

OBJECTIVES: A distributed research network (DRN) has the advantages of improved statistical power, and it can reveal more significant relationships by increasing sample size. However, differences in data structure constitute a major barrier to integrating data among DRN partners. We describe our experience converting Electronic Health Records (EHR) to the Observational Health Data Sciences and Informatics (OHDSI) Common Data Model (CDM). METHODS: We transformed the EHR of a hospital into Observational Medical Outcomes Partnership (OMOP) CDM ver. 4.0 used in OHDSI. All EHR codes were mapped and converted into the standard vocabulary of the CDM. All data required by the CDM were extracted, transformed, and loaded (ETL) into the CDM structure. To validate and improve the quality of the transformed dataset, the open-source data characterization program ACHILLES was run on the converted data. RESULTS: Patient, drug, condition, procedure, and visit data from 2.07 million patients who visited the subject hospital from July 1994 to November 2014 were transformed into the CDM. The transformed dataset was named the AUSOM. ACHILLES revealed 36 errors and 13 warnings in the AUSOM. We reviewed and corrected 28 errors. The summarized results of the AUSOM processed with ACHILLES are available at http://ami.ajou.ac.kr:8080/. CONCLUSIONS: We successfully converted our EHRs to a CDM and were able to participate as a data partner in an international DRN. Converting local records in this manner will provide various opportunities for researchers and data holders.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-219432

ABSTRACT

OBJECTIVES: A distributed research network (DRN) has the advantages of improved statistical power, and it can reveal more significant relationships by increasing sample size. However, differences in data structure constitute a major barrier to integrating data among DRN partners. We describe our experience converting Electronic Health Records (EHR) to the Observational Health Data Sciences and Informatics (OHDSI) Common Data Model (CDM). METHODS: We transformed the EHR of a hospital into Observational Medical Outcomes Partnership (OMOP) CDM ver. 4.0 used in OHDSI. All EHR codes were mapped and converted into the standard vocabulary of the CDM. All data required by the CDM were extracted, transformed, and loaded (ETL) into the CDM structure. To validate and improve the quality of the transformed dataset, the open-source data characterization program ACHILLES was run on the converted data. RESULTS: Patient, drug, condition, procedure, and visit data from 2.07 million patients who visited the subject hospital from July 1994 to November 2014 were transformed into the CDM. The transformed dataset was named the AUSOM. ACHILLES revealed 36 errors and 13 warnings in the AUSOM. We reviewed and corrected 28 errors. The summarized results of the AUSOM processed with ACHILLES are available at http://ami.ajou.ac.kr:8080/. CONCLUSIONS: We successfully converted our EHRs to a CDM and were able to participate as a data partner in an international DRN. Converting local records in this manner will provide various opportunities for researchers and data holders.


Subject(s)
Humans , Clinical Coding , Data Accuracy , Dataset , Electronic Health Records , Epidemiologic Methods , Hospitals, Teaching , Informatics , Sample Size , Vocabulary
SELECTION OF CITATIONS
SEARCH DETAIL
...