Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Mol Phylogenet Evol ; 173: 107496, 2022 08.
Article in English | MEDLINE | ID: mdl-35569809

ABSTRACT

The Panamic Clingfish Gobiesox adustus is widely distributed in the Tropical Eastern Pacific (TEP), from the central Gulf of California, Mexico to Ecuador, including the oceanic Revillagigedo Archipelago, and Isla del Coco. This cryptobenthic species is restricted to very shallow rocky-reef habitats. Here, we used one mitochondrial and three nuclear DNA markers from 155 individuals collected across the distribution range of the species in order to evaluate if geographically structured populations exist and to elucidate its evolutionary history. Phylogenetic analyses recovered a monophyletic group, with four well-supported, allopatric subgroups. Each subgroup corresponded to one of the following well-known biogeographic regions/provinces: 1) the Revillagigedo Archipelago, 2) the Cortez + Mexican provinces (Mexico), 3) the Panamic province (from El Salvador to Ecuador), and 4) Isla del Coco. A molecular-clock analysis showed a mean date for the divergence between clade I (the Revillagigedos and Cortez + Mexican provinces) and clade II (Panamic province and Isla del Coco) in the Pliocene, at ca. 5.33 Mya. Within clade I, the segregation between the Revillagigedos and Cortez + Mexican province populations was dated at ca. 1.18 Mya, during the Pleistocene. Within clade II, the segregation between samples of Isla del Coco and the Panamic province samples was dated at ca. 0.77 Mya, during the Pleistocene. The species tree, Bayesian species delimitation tests (BPP and STACEY), the ΦST, AMOVA, and the substantial genetic distances that exist between those four subgroups, indicate that they are independent evolutionary units. These cladogenetic events seem to be related to habitat discontinuities, and oceanographic and geological processes that produce barriers to gene flow for G. adustus, effects of which are enhanced by the intrinsic ecological characteristics of this species.


Subject(s)
Biological Evolution , Fishes , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Fishes/genetics , Humans , Phylogeny , Phylogeography
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443165

ABSTRACT

The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites-volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a 143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic 143Nd/144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core-mantle boundary. PREMA could have been stored in these structures for most of Earth's history, partially shielded from convective homogenization.

3.
Rev. biol. trop ; 68mar. 2020.
Article in English | LILACS-Express | LILACS | ID: biblio-1507604

ABSTRACT

Introduction: Isla del Coco is an important protected area for marine fauna in the Eastern Tropical Pacific. In this area, the species that inhabit the intertidal zone have been subject to few studies. One of the species inhabiting these areas is the clingfish Gobiesox adustus (Gobiesocidae). Objective: To analyze for the first time the mitochondrial gene cytochrome oxidase subunit 1 (cox1) of G. adustus' population from Isla del Coco and compare it with those of continental coast of Costa Rica and Ecuador. Methods: We constructed a haplotype network for these samples. Genetic diversity, distance and structure were calculated by several software. The historical demography of Isla del Coco samples was assessed with the method Bayesian skyline plot as implemented in BEAST2. Results: The samples segregate into three haplogroups: one consisting of the Isla del Coco samples, a second consisting of a subset of the Ecuador samples, and a third consisting of Costa Rica and the remaining Ecuador samples. The genetic distances between the three haplogroups range between 1.6% and 2.1% (uncorrected p-distance), and pairwise ΦST and AMOVA results between the three haplogroups show high and significant values. Conclusions: The Isla del Coco haplogroup showed a Pleistocene population growth, which agrees with demographic patterns found in other marine organisms. The history of isolation of the G. adustus population from Isla del Coco demonstrates the evolutionary independence of this population.


Introducción: Isla del Coco es un área protegida importante para la fauna marina en el Pacifico Oriental Tropical. En esta área, las especies que habitan la zona intermareal han sido objeto de pocos estudios. Una de las especies que habitan en estas áreas es el clingfish Gobiesox adustus (Gobiesocidae). Objetivo: Analizar por primera vez el gen mitocondrial citocromo oxidasa sub unidad 1 (cox1) de poblaciones de Isla del Coco y compararlo con las de la zona continental de Costa Rica y Ecuador. Métodos: Se construyó una red de haplotipos. La diversidad, la distancia y la estructura genética fueron calculadas por diversos programas. La demografía histórica de las muestras de Isla del Coco fue evaluada con el método Bayesian skyline plot implementado en BEAST2. Resultados: Las muestras se agruparon en tres haplogrupos: en un haplogrupo se incluyó a los individuos de Isla del Coco, otro haplogrupo integró las muestras de Ecuador y un tercer grupo incluyó las muestras restantes de Costa Rica y Ecuador. Las distancias genéticas entre los tres haplogrupos oscilan entre 1.6% y 2.1% (p-distancia, no corregida), las distancias ΦST y los resultados de AMOVA entre los tres haplogrupos muestran valores altos y significativos. Conclusiones: El haplogrupo de Isla del Coco mostró un crecimiento poblacional datado en el Pleistoceno, coincidiendo con la demografía poblacional encontrada en otros organismos marinos. La historia de aislamiento de la población de G. adustus de Isla del Coco demostró la independencia evolutiva de esta población.

4.
Proc Natl Acad Sci U S A ; 114(34): 8997-9002, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28784788

ABSTRACT

The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle fO2 may influence the fO2 at Earth's surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2 We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

5.
Contrib Mineral Petrol ; 172(4): 15, 2017.
Article in English | MEDLINE | ID: mdl-28360435

ABSTRACT

Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DClol/melt = 1.6 ± 0.9 × 10-4) to 0.33 (6) wt% H2O (DClol/melt = 2.2 ± 1.1 × 10-4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with (R2 = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.

6.
Contrib Mineral Petrol ; 172(1): 3, 2017.
Article in English | MEDLINE | ID: mdl-28057942

ABSTRACT

We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, [Formula: see text]. Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite-Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that [Formula: see text] for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni-Mg exchange reaction, which yields [Formula: see text] Each subset of constant composition experiments displays roughly the same temperature dependence of [Formula: see text] (i.e.,[Formula: see text]) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives [Formula: see text] = 3641 ± 396 (K) and [Formula: see text] = - 1.597 ± 0.229. Adding data from the literature yields [Formula: see text] = 4505 ± 196 (K) and [Formula: see text] = - 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for [Formula: see text] applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent [Formula: see text] and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...