Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Soft Robot ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979629

ABSTRACT

This study develops a biomimetic soft octopus suction device with integrated self-sensing capabilities designed to enhance the precision and safety of cardiac surgeries. The device draws inspiration from the octopus's exceptional ability to adhere to various surfaces and its sophisticated proprioceptive system, allowing for real-time adjustment of adhesive force. The research integrates thin-film pressure sensors into the soft suction cup design, emulating the tactile capabilities of an octopus's sucker to convey information about the contact environment in real time. Signals from sensors within soft materials exhibiting complex strain characteristics are processed and interpreted using the grey wolf optimizer-back propagation (GWO-BP) algorithm. The tissue stabilizer is endowed with the self-sensing capabilities of biomimetic octopus suckers, and real-time feedback on the adhesion state is provided. The embedding location of the thin-film pressure sensors is determined through foundational experiments with flexible substrates, standard spherical tests, and biological tissue trials. The newly fabricated suction cups undergo compression pull-off tests to collect data. The GWO-BP algorithm model accurately identifies and predicts the suction cup's adhesion force in real time, with an error rate below 0.97% and a mean prediction time of 0.0027 s. Integrating this technology offers a novel approach to intelligent monitoring and attachment assurance during cardiac surgeries. Hence, the probability of potential cardiac tissue damage is reduced, with future applications for integrating intelligent biomimetic adhesive soft robotics.

2.
Biomimetics (Basel) ; 9(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921220

ABSTRACT

Octopus tentacles are equipped with numerous suckers, wherein the muscles contract and expel air, creating a pressure difference. Subsequently, when the muscular tension is released, objects can be securely adhered to. This mechanism has been widely employed in the development of adhesive systems. However, most existing octopus-inspired structures are passive and static, lacking dynamic and controllable adhesive switching capabilities and excellent locomotion performance. Here, we present an octopus-inspired soft robot (OISR). Attracted by the magnetic gradient field, the suction cup structure inside the OISR can generate a strong adsorption force, producing dynamically controllable adsorption and separation in the gastrointestinal (GI) tract. The experimental results show that the OISR has a variety of controllable locomotion behaviors, including quick scrolling and rolling motions, generating fast locomotion responses, rolling over gastric folds, and tumbling and swimming inside liquids. By carrying drugs that are absorbable by GI epithelial cells to target areas, the OISR enables continuous drug delivery at lesions or inflamed regions of the GI tract. This research may be a potential approach for achieving localized slow drug release within the GI tract.

3.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927618

ABSTRACT

The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-ß signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, ß-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.


Subject(s)
Octopodiformes , Sex Differentiation , Transcriptome , Animals , Female , Male , Octopodiformes/genetics , Sex Differentiation/genetics , Transcriptome/genetics , Ovary/metabolism , Ovary/growth & development , Testis/metabolism , Testis/growth & development , Signal Transduction/genetics , Gene Expression Profiling/methods , Sex Determination Processes/genetics , East Asian People
4.
Genes Genomics ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922499

ABSTRACT

BACKGROUND: The genes involved in cephalopod development and their association with hatching and survival during early life stages have been extensively studied. However, few studies have investigated the paralarvae transcriptome of the East Asian common octopus (Octopus sinen sis). OBJECTIVE: This study aimed to identify the genes related to embryonic development and hatching in O. sinensis using RNA sequencing (RNA-seq) and verify the genes most relevant to different embryonic stages. METHODS: RNA samples from hatched and 25 days post-hatching (dph) O. sinensis paralarvae were used to construct cDNA libraries. Clean reads from individual samples were aligned to the reference O. sinensis database to identify the differentially expressed genes (DEGs) between the 0- and 25-dph paralarvae libraries. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to supplement the RNA-seq data for embryogenic developmental stages. RESULTS: A total of 12,597 transcripts were annotated and 5,468 DEGs were identified between the 0- and 25-dph O. sinensis paralarvae, including 2,715 upregulated and 2,753 downregulated transcripts in the 25-dph paralarvae. Several key DEGs were related to transmembrane transport, lipid biosynthesis, monooxygenase activity, lipid transport, neuropeptide signaling, transcription regulation, and protein-cysteine S-palmitoyltransferase activity during the post-hatching development of O. sinensis paralarvae. RT-qPCR analysis further revealed that SLC5A3A, ABCC12, and NPC1 transcripts in 20 and/or 30 days post-fertilization (dpf) embryos were significantly higher (p < 0.05) than those in 10-dpf embryos. CONCLUSION: Transcriptome profiles provide molecular targets to understand the embryonic development, hatching, and survival of O. sinensis paralarvae, and enhance octopus production.

5.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842008

ABSTRACT

In this report, passive elasticity properties of Octopus rubescens arm tissue are investigated using a multidisciplinary approach encompassing biomechanical experiments, computational modeling, and analyses. Tensile tests are conducted to obtain stress-strain relationships of the arm under axial stretch. Rheological tests are also performed to probe the dynamic shear response of the arm tissue. Based on these tests, comparisons against three different viscoelasticity models are reported.


Subject(s)
Elasticity , Octopodiformes , Animals , Octopodiformes/physiology , Biomechanical Phenomena , Viscosity , Extremities/physiology , Tensile Strength , Rheology , Stress, Mechanical
6.
Adv Sci (Weinh) ; : e2400806, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874316

ABSTRACT

The emergence of the field of soft robotics has led to an interest in suction cups as auxiliary structures on soft continuum arms to support the execution of manipulation tasks. This application poses demanding requirements on suction cups with respect to sensorization, adhesion under non-ideal contact conditions, and integration into fully soft systems. The octopus can serve as an important source of inspiration for addressing these challenges. This review aims to accelerate research in octopus-inspired suction cups by providing a detailed analysis of the octopus sucker, determining meaningful performance metrics for suction cups on the basis of this analysis, and evaluating the state-of-the-art in suction cups according to these performance metrics. In total, 47 records describing suction cups are found, classified according to the deployed actuation method, and evaluated on performance metrics reflecting the level of sensorization, adhesion, and integration. Despite significant advances in recent years, the octopus sucker outperforms all suction cups on all performance metrics. The realization of high resolution tactile sensing in suction cups and the integration of such sensorized suction cups in soft continuum structures are identified as two major hurdles toward the realization of octopus-inspired manipulation strategies in soft continuum robot arms.

7.
Res Sq ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883707

ABSTRACT

We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) that retains the tuning to amplitude modulation (AM) that was established in earlier models. The mechanism of velocity sensitivity is sequence detection by octopus cells of the posteroventral cochlear nucleus, which have been proposed in physiological studies to respond preferentially to the order of arrival of cross-frequency inputs of different amplitudes. Model architecture is based on coincidence detection of a combination of excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is controlled by inhibition and excitation that are tuned to the same frequency. We present several example neurons that demonstrate the feasibility of the model in simulating realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. Additionally, we explore the systematic impact of varying parameters on model responses. The proposed model can be used to assess the contribution of IC chirp-velocity sensitivity to responses to complex sounds, such as speech.

8.
Article in English | MEDLINE | ID: mdl-38699908

ABSTRACT

The effects of two prepared feeds were tested on growth, survival, enzymatic activity, nutritive reserves in the digestive gland and oxygen consumption of Octopus maya juveniles. For the first time, a semihumid paste (HD, control) and a dry diet, in pelleted form (PD, experimental) with the same formulation were used for this species. The experiment lasted for 42 days. Results indicate that growth rates were similar for both diets (p > 0.05); however, survival (70%) was higher with the PD compared to the HD (48%) (p < 0.05). The performance index was higher for octopuses fed the PD (p < 0.05). No differences in acid proteases activity were observed. However, a higher activity of alkaline proteases in the octopuses fed the PD was observed (p < 0.05). Ingestion rate was higher for octopuses fed the PD. Routine energy inversion was similar in both treatments (p > 0.05). A greater energy inversion was observed in octopuses fed the PD, whose active metabolism was double compared to the octopuses fed the HD. Results showed that the PD promoted similar growth compared to the HD diet but favored survival, and a greater investment in the active metabolism, reflected in the apparent heat increase.

9.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38752595

ABSTRACT

There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.


Subject(s)
Antioxidants , Climate Change , Octopodiformes , Oxidative Phosphorylation , Animals , Female , Octopodiformes/metabolism , Octopodiformes/physiology , Antioxidants/metabolism , Acclimatization , Temperature , Heart/physiology , Myocardium/metabolism , Superoxide Dismutase/metabolism
10.
Foods ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672906

ABSTRACT

Amphioctopus neglectus is a species of octopus that is favored by consumers due to its rich nutrient profile. To investigate the influence of different thawing methods on the quality of octopus meat, we employed four distinct thawing methods: air thawing (AT), hydrostatic thawing (HT), flowing water thawing (FWT), and microwave thawing (MT). We then explored the differences in texture, color, water retention, pH, total volatile basic nitrogen (TVB-N), total sulfhydryl content, Ca2+-ATPase activity, and myofibrillar protein, among other quality indicators in response to these methods, and used a low-field nuclear magnetic resonance analyzer to assess the water migration that occurred during the thawing process. The results revealed that AT had the longest thawing time, leading to oxidation-induced protein denaturation, myofibrillar protein damage, and a significant decrease in water retention. Additionally, when this method was utilized, the content of TVB-N was significantly higher than in the other three groups. HT, to a certain extent, isolated the oxygen in the meat and thus alleviated protein oxidation, allowing higher levels of Ca2+-ATPase activity, sulfhydryl content, and springiness to be maintained. However, HT had a longer duration: 2.95 times that of FWT, resulting in a 9.84% higher cooking loss and a 28.21% higher TVB-N content compared to FWT. MT had the shortest thawing time, yielding the lowest content of TVB-N. However, uneven heating and in some cases overcooking occurred, severely damaging the protein structure, with a concurrent increase in thawing loss, W value, hardness, and shear force. Meanwhile, FWT improved the L*, W* and b* values of octopus meat, enhancing its color and water retention. The myofibrillar protein (MP) concentration was also the highest after FWT, with clearer subunit bands in SDS-PAGE electrophoresis, indicating that less degradation occurred and allowing greater springiness, increased Ca2+-ATPase activity, and a higher sulfhydryl content to be maintained. This suggests that FWT has an inhibitory effect on oxidation, alleviating protein oxidation degradation and preserving the quality of the meat. In conclusion, FWT outperformed the other three thawing methods, effectively minimizing adverse changes during thawing and successfully maintaining the quality of octopus meat.

11.
Proc Natl Acad Sci U S A ; 121(16): e2314359121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557166

ABSTRACT

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body's mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity. Inspired by the combined action of biological suckers' soft bodies and mucus secretion, we propose a multiscale suction mechanism which successfully achieves strong adaptive suction on dry complex surfaces which are both highly curved and rough, such as a stone. The proposed multiscale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multilayer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to micrometres (~10 µm). The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on complex surfaces but minimal overflow. We discuss its physical principles and demonstrate its practical application as a robotic gripper on a wide range of complex dry surfaces. We believe the presented multiscale adaptive suction mechanism is a powerful unique adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.


Subject(s)
Robotics , Water , Suction , Equipment Design
13.
Soft Robot ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557240

ABSTRACT

A light-weight actuator developed in this work belongs to a class of soft robots, and in a sense, resembles an octopus. Its main function is in the attachment or detachment to a solid surface driven by an electro-thermopneumatic mechanism. In this study, a suction cup similar to that of an octopus is manufactured from an elastomer, which is actuated by an electro-thermopneumatic system, mimicking the movement of the octopus' acetabular muscle. Accordingly, the adhesion force generated by such an actuator is regulated by releasing the inner air or adjusting the cup's elasticity. This actuator is designed to be an assistive device that facilitates the individual's physical strength in case of conditions related to aging or cerebellar disease, or a person who lost limbs. In this study, the actuator capabilities are demonstrated in the form of a grip-assisting glove and prosthetic attacher. Moreover, the adhesion mechanism is quantified by numerical simulations and verified experimentally.

14.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679344

ABSTRACT

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Octopodiformes , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Octopodiformes/genetics , Octopodiformes/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Poly I-C/pharmacology , Peptidoglycan/pharmacology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Pathogen-Associated Molecular Pattern Molecules/pharmacology
15.
Article in English | MEDLINE | ID: mdl-38472410

ABSTRACT

Octopuses integrate visual, chemical and tactile sensory information while foraging and feeding in complex marine habitats. The respective roles of these modes are of interest ecologically, neurobiologically, and for development of engineered soft robotic arms. While vision guides their foraging path, benthic octopuses primarily search "blindly" with their arms to find visually hidden prey amidst rocks, crevices and coral heads. Each octopus arm is lined with hundreds of suckers that possess a combination of chemo- and mechanoreceptors to distinguish prey. Contact chemoreception has been demonstrated in lab tests, but mechanotactile sensing is less well characterized. We designed a non-invasive live animal behavioral assay that isolated mechanosensory capabilities of Octopus bimaculoides arms and suckers to discriminate among five resin 3D-printed prey and non-prey shapes (all with identical chemical signatures). Each shape was introduced inside a rock dome and was only accessible to the octopus' arms. Octopuses' responses were variable. Young octopuses discriminated the crab prey shape from the control, whereas older octopuses did not. These experiments suggest that mechanotactile sensing of 3D shapes may aid in prey discrimination; however, (i) chemo-tactile information may be prioritized over mechanotactile information in prey discrimination, and (ii) mechanosensory capability may decline with age.

16.
Bioinspir Biomim ; 19(3)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38467068

ABSTRACT

Bioinspired and biomimetic soft grippers are rapidly growing fields. They represent an advancement in soft robotics as they emulate the adaptability and flexibility of biological end effectors. A prominent example of a gripping mechanism found in nature is the octopus tentacle, enabling the animal to attach to rough and irregular surfaces. Inspired by the structure and morphology of the tentacles, this study introduces a novel design, fabrication, and characterization method of dielectric elastomer suction cups. To grasp objects, the developed suction cups perform out-of-plane deflections as the suction mechanism. Their attachment mechanism resembles that of their biological counterparts, as they do not require a pre-stretch over a rigid frame or any external hydraulic or pneumatic support to form and hold the dome structure of the suction cups. The realized artificial suction cups demonstrate the capability of generating a negative pressure up to 1.3 kPa in air and grasping and lifting objects with a maximum 58 g weight under an actuation voltage of 6 kV. They also have sensing capabilities to determine whether the grasping was successful without the need of lifting the objects.


Subject(s)
Octopodiformes , Robotics , Animals , Biomimetics/methods , Elastomers , Octopodiformes/anatomy & histology , Robotics/methods
17.
ACS Nano ; 18(11): 7877-7889, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38450636

ABSTRACT

The octopus, as one of the most famous celebrities in bionics, has provided various inspirations for camouflage materials, soft-bodied robots, and flexible grabbers. The miniaturization of such structures will help the development of microrobots, microdelivery of drugs, and surface coating. With the lack of relevant effective preparation approaches, however, the generation of such octopus-like structures with a size of ∼1 µm or below is challenging. Here, we develop an approach based on laser-microdroplet interaction for generating an octopus-like structure with a size of ∼1 µm. The developed approach uses laser-microdroplet interaction to provide a large driving force of ∼107 Pa at a confined space (<1 µm), locally crumpling the precursor in the microdroplet. The locally crumpled particles possess both crumpled and uncrumpled structures that resemble an octopus's head and soft body. In the adhesion test, the octopus-like particles exhibit high adhesive properties in air, in water, and on a flexible substrate. In the electrochemical test, the octopus-like particles on flexible electrodes show good electrochemical and adhesive properties under hundreds of bending cycles. Benefiting from the combination of crumpled and uncrumpled morphologies, the created particles with octopus-like microstructure are demonstrated to possess comprehensive performance, exhibiting wide application potentials in the fields of microswimmers, surface coatings, and electrochemistry. Additionally, the method developed in this work has the advantages of concentrated energy in a confined space, displaying prospective potentials in micro- and nanoprocessing.

18.
MethodsX ; 12: 102657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38545377

ABSTRACT

The purpose of this project was to use modified methodology and new approaches to determine whether the California two-spotted octopus (Octopus bimaculoides) shows evidence of higher cognitive function as juveniles. This species' cognitive ability was assessed in ∼4 month old octopus using a food preference test and a learning test (ability to recognize a habitat created from 3D printed rocks and navigate to its hidden food source). Methods for determining associative learning for this species were developed. In addition, potential enhancements to future O. bimaculoides husbandry and study design are discussed.•Enrichment and care methodology for juvenile cephalopods from hatchling to juvenile•In the article we discuss new approaches for studying associative learning, spatial learning, and food preference that can be adapted for various species of cephalopods, and the usage of 3D printing as a habitat re-creation tool in aquaria•We introduce histology methodology for observing and comparing brain development in juvenile cephalopods.

19.
Sci Total Environ ; 923: 171510, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453076

ABSTRACT

Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.


Subject(s)
Octopodiformes , Animals , Humans , Infant, Newborn , Temperature , Water , Embryo, Nonmammalian/physiology , Embryonic Development
20.
Ecol Evol ; 14(3): e11107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38510541

ABSTRACT

We present the description of defensive behavior in wild Octopus vulgaris against conger eel (Conger conger) attacks based on three video sequences recorded by recreational SCUBA divers in the eastern Atlantic off the coast of Galicia (NW Spain) and in the Cantabrian Sea (NW Spain). These records document common traits in defensive behavior: (1) the octopuses enveloped the conger eel's head to obscure its view; (2) they covered the eel's gills in an attempt to suffocate it; (3) they released ink; (4) the octopuses lost some appendages because of the fight. In the third video, the octopus did not exhibit the defensive behavior described in the first two videos due to an inability to utilize its arms in defense, and the conger eel's success in capturing octopuses is discussed. Additionally, both the cost that the octopus could face by losing some arms during the fight and whether the experience it acquires can be an advantage for future encounters are analyzed. The defensive behavior exhibited by octopuses in this study highlights their ability to survive in a hostile environment and serves as an example of the extensive repertoire of anti-predator strategies employed by these cephalopods.

SELECTION OF CITATIONS
SEARCH DETAIL
...