Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Water Environ Res ; 96(7): e11073, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978428

ABSTRACT

The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater sewer lines into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of three different granular activated carbon filter technologies, operating side by side, under similar operating conditions, each having an average 3.8-s contact time. The three activated carbon filters contained each 0.07 m3 of coconut, coal, and coconut mixed with permanganate media. The foul air entering the granular activated carbon filters contained 82% to 83% relative humidity. No moisture removal mechanism was used prior to treatment. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (hydrogen sulfide), rotten vegetables (methyl mercaptan), canned corn (dimethyl sulfide), rotten garlic (dimethyl disulfide), earthy/musty (2-methyl isoborneol and 2-isopropyl 3-methoxy pyrazine), and fecal (skatole and indole). This is the first time a study evaluates the removal of specific odors by simultaneously employing sensory analyses using the odor profile method, which defines the different odor characters and intensities, together with chemical analyses of the odorants causing these odors. The results show that the three granular activated carbon filters, before hydrogen sulfide breakthrough, provided significant improvement in odor intensity and odorant removal. Breakthrough was reached after 57 days for the coconut mixed with permanganate, 107 days for the coconut, and 129 days for the coal granular activated carbon filter. Breakthrough (the critical saturation point of the activated carbon media) was considered reached when the hydrogen sulfide percentage removal diminished to 90% and continued downward. The coconut mixed with permanganate granular activated carbon filter provided the best treatment among the media tested, achieving very good reduction of odorants, as measured by chemical analyses, and reasonable removal of odor intensities, as measured by the odor profile method. The coconut mixed with permanganate granular activated carbon is recommended for short-term odor control systems at sewer networks or emergency plant maintenance situations given its shorter time to breakthrough compared with the other granular activated carbons. The coal and coconut granular activated carbon filters are generally used as the last stage of an odor treatment system. Because of the observed poor to average performance in removing odorants other than hydrogen sulfide, the treatment stage(s) prior to the use of these granulated activated carbons should provide a good methyl mercaptan removal of at least 90% in order to avoid the formation of dimethyl disulfide, which, in the presence of moisture in the carbon filter, emit the characteristic rotten garlic odor. The differences observed between the performances based on odorant removal by chemical analysis compared with those based on sensorial analyses by the odor profile method indicate that both analyses are required to understand more fully the odor dynamics. PRACTITIONER POINTS: Three virgin granulated activated carbon media were evaluated in a field pilot unit using raw collections foul air. Coal, coconut, and coconut mixed with permanganate were tested until breakthrough. Samples were analyzed both chemically (odorants) and sensorially (odors). Coconut mixed with permanganate proved to be the media that better reduced odorants and odors.


Subject(s)
Charcoal , Filtration , Odorants , Charcoal/chemistry , Filtration/methods , Cocos/chemistry , Carbon/chemistry
2.
Food Chem ; 458: 140145, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38943956

ABSTRACT

Although Enshi Yulu tea (ESYL) possesses a distinctive fragrance, there is a scarcity of studies focusing on its primary volatiles or aroma genesis. This study aims to elucidate the dynamics in the profiles of aromas and volatiles through aroma profiling analysis and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A total of 10 aroma attributes and 128 volatiles were identified in ESYL, with geraniol and linalool exhibiting the highest levels, and alcohols constituting the predominant proportion. Besides, a relative odor activity value (ROAV) based molecular aroma wheel was constructed, revealing 12 key odorants with ROAVs >1, wherein linalool, ß-ionone, and nonanal ranked highest. Notably, steaming and final drying emerged as critical steps for ESYL aroma development, while the non-enzymatic degradation of fatty acids likely contributed to the formation of its fresh aroma. These findings significantly enhance our comprehension of ESYL aroma formation.

3.
Food Chem ; 456: 139951, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38876058

ABSTRACT

To study the olfactory perceptual interaction of odorants (OPIO) in binary mixtures containing maltol, a simple and efficient analysis method was developed. This method correlated three variables of the binary mixture: two rates of change in perceived odor intensities of two odorants within the binary mixtures, and the degree of overall odor synergy exhibited by the binary mixtures. By creating a three-dimensional scatter matrix with the variables, the changes in odor intensity of the binary mixture due to OPIO were visualized. The results revealed that the proportions of mutual antagonism, opposite effect, mutual independence, and mutual synergy in the binary mixtures were 64.7%, 32.9%, 1.9%, and 0.5%, respectively. The odor of maltol was mainly masked, and those of esters (68%), aldehydes and ketones (33%) in the mixture were enhanced. In terms of overall odor intensity, 67% of cases involved partial addition, followed by 22.2% overshadowing, and 19.6% stronger component effect.

4.
Bioresour Technol ; 403: 130870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777234

ABSTRACT

Research on the stability evaluation of biotrickling filters (BTFs) under harsh conditions and the bacterial adaptation process still needs to be improved. Herein, BTFs with polypropylene plastic (PP) and ceramic raschig rings (CRR) were investigated for a better understanding of the biodegradation of ammonia (NH3), hydrogen sulfide (H2S), and dimethyl sulfide (DMS). The results showed an excellent performance in removal efficiency (RE) for NH3 (91.6 %-99.9 %), H2S (RE: 55.3 %-99.5 %), and DMS (RE: 10.6 %-99.9 %). It was found that a more apparent positive correlation between N2O emission and pressure drop in CRR BTF (R2 = 0.92) than in PP BTF (R2 = 0.79) (P < 0.01). Low temperature promotes an increase in the abundance ofComamonasandBacillus. The polysaccharides in PP and CRR reactors decreased by 78.6 % and 68.1 % when temperature reduced from 25℃ to 8℃. This work provides a novel insight into understanding bacterial survival under harsh BTF environments.


Subject(s)
Ammonia , Biodegradation, Environmental , Filtration , Odorants , Ammonia/metabolism , Filtration/methods , Bioreactors , Hydrogen Sulfide/metabolism , Sulfides/chemistry , Sulfides/metabolism , Sulfur/metabolism , Ceramics , Temperature
5.
J Hazard Mater ; 471: 134367, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653135

ABSTRACT

Assessing the odor risk caused by volatile organic compounds (VOCs) in water has been a big challenge for water quality evaluation due to the abundance of odorants in water and the inherent difficulty in obtaining the corresponding odor sensory attributes. Here, a novel odor risk assessment approach has been established, incorporating nontarget screening for odorous VOC identification and machine learning (ML) modeling for odor threshold prediction. Twenty-nine odorous VOCs were identified using two-dimensional gas chromatography-time of flight mass spectrometry from four surface water sampling sites. These identified odorants primarily fell into the categories of ketones and ethers, and originated mainly from biological production. To obtain the odor threshold of these odorants, we trained an ML model for odor threshold prediction, which displayed good performance with accuracy of 79%. Further, an odor threshold-based prioritization approach was developed to rank the identified odorants. 2-Methylisoborneol and nonanal were identified as the main odorants contributing to water odor issues at the four sampling sites. This study provides an accessible method for accurate and quick determination of key odorants in source water, aiding in odor control and improved water quality management. ENVIRONMENTAL IMPLICATION: Water odor episodes have been persistent and significant issues worldwide, posing severe challenges to water treatment plants. Unpleasant odors in aquatic environments are predominantly caused by the occurrence of a wide range of volatile organic chemicals (VOCs). Given the vast number of newly-detected VOCs, experimental identification of the key odorants becomes difficult, making water odor issues complex to control. Herein, we propose a novel approach integrating nontarget analysis with machine learning models to accurate and quick determine the key odorants in waterbodies. We use the approach to analyze four samples with odor issues in Changsha, and prioritized the potential odorants.

6.
J Agric Food Chem ; 72(18): 10548-10557, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670543

ABSTRACT

Mead was analyzed by using the concept of molecular sensory science for the identification of key odorants. A total of 29 odor-active compounds were identified in mead by using gas chromatography olfactometry (GCO). Flavor dilution (FD) factors of identified compounds ranged from 1 to 16,384, compounds with FD factors ≥32 were quantitated by using stable isotopically substituted odorants as internal standards or external standard method, and odor activity values (OAVs) were calculated. Fifteen compounds showed OAVs ≥1: aldehydes (2-phenylacetaldehyde, 3-(methylsulfanyl)propanal), 4-hydroxy-3-methoxybenzaldehyde), esters (ethyl 3-methylbutanoate, ethyl propanoate, ethyl octanoate), alcohols (2-phenylethan-1-ol, 3- and 2-methylbutan-1-ol, 3-(methylsulyfanyl)propan-1-ol), furanons (4-hydroxy-2,5-dimethylfuran-3(2H)-one, 3-hydroxy-4,5-dimethylfuran-2(5H)-one), acids (3- and 2-methylbutanoic acid, acetic acid), 1,1-diethoxyethane, and 4-methylphenol. 2-Phenylacetaldehyde (OAV, 3100) was suggested as the compound with the biggest influence on the aroma of mead, followed by 4-hydroxy-2,5-dimethylfuran-3(2H)-one (OAV, 1900), 3-(methylsulfanyl)propanal (OAV, 890), and 2-phenylethan-1-ol (OAV, 680). Quantitative olfactory profile analysis revealed strong honey, malty, and alcoholic impressions. Omission experiments revealed that 3-(methylsulfanyl)propanal, 2-phenylethan-1-ol, 4-hydroxy-2,5-dimethylfuran-3(2H)-one, ethyl propanoate, ethyl 3-methylbutanoate, 2-phenylacetaldehyde, 3- and 2-methylbutanoic acid, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde were the key odorants in the mead. Determining concentrations of key odorants in important production steps showed that the fermentation and maturation stages had the strongest effect on the formation of mead aroma.


Subject(s)
Flavoring Agents , Odorants , Olfactometry , Volatile Organic Compounds , Odorants/analysis , Humans , Flavoring Agents/chemistry , Male , Volatile Organic Compounds/chemistry , Poland , Adult , Female , Gas Chromatography-Mass Spectrometry , Smell , Wine/analysis , Young Adult , Middle Aged
7.
J Chem Ecol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568416

ABSTRACT

Fast and effective monitoring and surveillance techniques are crucial for the swift implementation of control methods to prevent the spread of Huanglongbing, a devastating citrus disease, and its invasive psyllid vector, Asian citrus psyllid, Diaphorina citri, into South Africa, as well as to control the native vector, African citrus triozid, Trioza erytreae. Monitoring for citrus psyllid pests can be improved by using semiochemical odorants to augment already visually attractive yellow sticky traps. However, environmental variables such as temperature and humidity could influence odorant release rates. Five field cages were used to test the ability of a selection of odorants to improve yellow sticky trap efficacy in capturing citrus psyllids. Environmental effects on odorant loss from the dispensers were also investigated. The odorants that most improved yellow sticky trap captures in field cages were then tested under open field conditions alongside lower concentrations of those same lures. Gas chromatography-mass spectrometry was used to calculate odorant release rates as well as to determine if any contamination occurred under field conditions. None of the odorants under field cage or field conditions significantly improved psyllid capture on yellow sticky traps. Temperature influenced odorant loss, and release rate from polyethylene bulbs decreased over time. Based on these results, the use of unbaited yellow sticky traps seems to be the most effective method for monitoring of Huanglongbing vectors.

8.
Pestic Biochem Physiol ; 201: 105861, 2024 May.
Article in English | MEDLINE | ID: mdl-38685215

ABSTRACT

Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that ß-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.


Subject(s)
Insect Proteins , Molecular Docking Simulation , Receptors, Odorant , Tribolium , Animals , Tribolium/drug effects , Tribolium/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Insecticides/pharmacology , Insecticides/toxicity , Polycyclic Sesquiterpenes/pharmacology , Molecular Dynamics Simulation
9.
Food Chem X ; 22: 101303, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38590631

ABSTRACT

'Baimmaocha' is a distinctive resource for production of high-quality black tea, and its processed black tea has unique aroma characteristics. 190 volatile compounds were identified by comprehensive two-dimensional gas chromatography-olfactometry-quadrupole-time-of-flight mass spectrometry(GC × GC-O-Q-TOMS), and among them 23 compounds were recognized as key odorants contributing to forming different aroma characteristics in 'Baimaocha' black teas of Rucheng, Renhua, and Lingyun (RCBT, RHBT, LYBT). The odor activity value coupled with GC-O showed that methyl salicylate (RCBT), geraniol (RHBT), trans-ß-ionone and benzeneacetaldehyde (LYBT) might be the most definitive aroma compounds identified from their respective regions. Furthermore, PLS analysis revealed three odorants as significant contributors to floral characteristic, four odorants related to fruity attribute, four odorants linked to fresh attribute, and three odorants associated with roasted attribute. These results provide novel insights into sensory evaluation and chemical substances of 'Baimaocha' black tea and provide a theoretical basis for controlling and enhancement tea aroma quality.

10.
Food Chem X ; 22: 101344, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38595757

ABSTRACT

To identify the key odorants in Amomum tsaoko (AT), volatiles in fresh AT (FAT) and dried AT (DAT) were investigated using molecular sensory science. In addition to this, the sensomics approach was used to confirm the presence of the compound in FAT that contributed the most to its aroma profile. A total of 49 odor-active compounds (43 in FAT and 42 in DAT) with flavor dilution (FD) factors ranging from 1 to 6561 were identified, with eucalyptol exhibiting the highest FD factor of 6561. Odorants with FD factors ≥ 27 were quantitated, and 23 and 20 compounds in FAT and DAT, respectively, with odor activity value ≥ 1 were determined as key odorants. Recombination and omission experiment further indicated that (E)-2-dodecenal, geranial, octanal, (E)-2-octenal, (E)-2-decenal, and eucalyptol contributed significantly to the overall aroma profile of FAT. After drying of FAT, the concentrations of aldehydes decreased significantly, whereas those of terpene hydrocarbons increased. Multivariate statistical analysis revealed that 26 FAT and 23 DAT odorants were biomarker compounds.

11.
Biosci Biotechnol Biochem ; 88(6): 656-664, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38533648

ABSTRACT

In a previous study, we developed a novel analytical method to directly and simultaneously detect taste- and odor-active compounds using graphite carbon black (GCB)-assisted laser desorption ionization mass spectrometry (LDI-MS). In this study, we aimed to evaluate food quality using a variety of soy sauces using the method to discriminate each product. Graphite carbon black-laser desorption ionization-mass spectrometry allowed the provision of hundreds of MS peaks derived from soy sauces in both positive and negative modes without any tedious sample pretreatments. Principal component analysis using the obtained MS peaks clearly distinguished three soy sauce products based on the manufacturing countries (Japan, China, and India). Moreover, this method identified distinct MS peaks for discrimination, which significantly correlated with their quantitative amounts in the products. Thus, GCB-LDI-MS analysis was established as a simple and rapid technique for food analysis, illustrating the chemical patterns of food products.


Subject(s)
Graphite , Soy Foods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Soy Foods/analysis , Graphite/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Principal Component Analysis , Food Analysis/methods , Soot/analysis
12.
Open Biol ; 14(3): 230438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531420

ABSTRACT

Deciphering how spotted lanternfly (SLF), an invasive polyphagous planthopper in North America, engages with its environment is a pressing issue with fundamental biological significance and economic importance. This interaction primarily depends on olfaction. However, the cellular basis of olfaction in SLF remains elusive. Here we investigate the neuronal and functional organization of the subapical labial sensory organ using scanning electron microscopy and electrophysiological recordings. This organ is believed to supply planthoppers with crucial sensory information that influences their subsequent feeding behaviour. We find in SLF that this organ comprises two identical placoid sensilla, each housing two distinct neurons. The A neuron displays a remarkable sensitivity to changes in airflow speed. Importantly, the same neuron also exhibits robust excitatory responses exclusively to three aldehydes out of a diverse pool of 85 tested odorants and inhibitory responses to 62 other odorants. By contrast, the B neuron solely serves as an olfactory detector, showing strong excitatory responses to 17 odorants and inhibitory responses to only three. The results provide a potential cellular basis for the behavioural responses of SLF to its ecologically relevant stimuli. Our study also identifies new odorants that may be useful for managing this serious pest.


Subject(s)
Hemiptera , Animals , Feeding Behavior , Neurons
13.
Food Res Int ; 182: 114077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519167

ABSTRACT

Fruits flavor deterioration is extremely likely to occur during post-harvest storage, which not only damages quality but also seriously affects its market value. This work focuses on the study of fruits deterioration odorants during storage by describing their chemical compositions (i.e., alcohols, aldehydes, acids, and sulfur-containing compounds). Besides, the specific flavor deterioration mechanisms (i.e., fermentation metabolism, lipid oxidation, and amino acid degradation) inducing by factors (temperature, oxygen, microorganisms, ethylene) are summarized. Moreover, quality control strategies to mitigate fruits flavor deterioration by physical (temperature control, hypobaric treatment, UV-C, CA) and chemical (1-MCP, MT, NO, MeJA) techniques are also proposed. This review will provide useful references for fruits flavor control technologies development.


Subject(s)
Fruit , Odorants , Fruit/chemistry , Aldehydes/analysis , Alcohols/analysis , Fermentation
14.
Int J Biol Macromol ; 261(Pt 2): 129852, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307432

ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus (Curculionidae: Coleoptera) is a highly destructive global pest of coconut trees, with a preference for laying its eggs on new leaves. Females can identify where to lay eggs by using their sense of smell to detect specific odorants found in new leaves. In this study, we focused on the two odorants commonly found in new leaves by GC-MS: trans, trans-2,4-nonadienal and trans-2-nonenal. Our behavioral assays demonstrated a significant attraction of females to both of these odorants, with their electrophysiological responses being dose-dependent. Furthermore, we examined the expression patterns induced by these odorants in eleven RferOBP genes. Among them, RferOBP3 and RferOBP1768 exhibited the most significant and simultaneous upregulation. To further understand the role of these two genes, we conducted experiments with females injected with OBP-dsRNA. This resulted in a significant decrease in the expression of RferOBP3 and RferOBP1768, as well as impaired the perception of the two odorants. A fluorescence competitive binding assay also showed that both RferOBPs strongly bound to the odorants. Additionally, sequence analysis revealed that these two RferOBPs belong to the Minus-C family and possess four conserved cysteines. Molecular docking simulations showed strong interactions between these two RferOBPs and the odorant molecules. Overall, our findings highlight the crucial role of RferOBP3 and RferOBP1768 in the olfactory perception of the key odorants in coconut palm new leaves. This knowledge significantly improves our understanding of how RPW females locate sites for oviposition and lays the foundation for future research on the development of environmentally friendly pest attractants.


Subject(s)
Arecaceae , Weevils , Animals , Female , Cocos/genetics , Odorants , Weevils/genetics , Molecular Docking Simulation , Arecaceae/chemistry
15.
Chemistry ; 30(19): e202400006, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38358844

ABSTRACT

In this review, the impact of the transition from today's resource-wasting petrochemical economy towards a 100/100 renewable and biodegradable future is discussed with respect to the fragrance families: "citrus", "green", "fruity", "floral", "floriental", "oriental", "woody", "chypre" and "fougère". After benchmark data on ingredients usage, definitions on biodegradation and sustainability are given. Celebrating the 150th anniversary of synthetic vanillin, its historic synthesis from renewable starting materials serves as introduction. In the grand scheme of things, citrus scents upcycled from the beverages industry, are already an ideal case for 100/100 with new opportunities for artificial essential oils. In the fruity domain, transparent and lactonic ingredients are available in a sustainable manner. However, in the domain of green odorants, there is a lack of green chemistry for important key materials. In the floral family, renewability is more critical than biodegradability, but cost is an issue. Thanks to Ambrox and maltol, florientals and orientals will persist, while woody notes severely lack an Iso E Super replacer. In the chypre genre, patchouli became the new moss, but more musks are increasingly in demand. With their high percentage of linalool and dihydromyrcenol, the construction of fougères could well become a precedent for other families, despite challenges in vetiver and salicylates. Still, the challenges exemplified here create immense opportunities for new perfumery materials.


Subject(s)
Odorants , Perfume , Humans , Perfume/chemistry
16.
Food Chem ; 445: 138398, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38394903

ABSTRACT

A protein hydrolysate of goat viscera added with xylose, cysteine, and thiamine under different pH was used to prepare a meat flavoring. Goat viscera hydrolysate and flavoring were subjected to analysis of physicochemical characteristics, amino acid profile, sugars, fatty acids, and volatile profile. Meat aroma characteristics were initiated in the hydrolysate, in which Strecker's pyrazines and aldehydes were identified, which also had fatty acids and amino acids available for the formation of 96 volatile compounds in the flavorings via lipid manipulation, Maillard occurrence, Strecker manipulation and interactions among these means. Maillard reaction products with intense meat aroma, such as 2-methyl-3-furanthiol, 2-furfurylthiol and, bis(2-methyl-3-furyl) disulfide were isolated only in the flavoring at pH 4. In contrast, the flavoring at pH 6 showed a higher concentration than all the other compounds, providing a lower meat characteristic, but an intense sweet, fatty and goat aroma.


Subject(s)
Cysteine , Maillard Reaction , Animals , Cysteine/chemistry , Thiamine/analysis , Xylose/chemistry , Protein Hydrolysates , Goats , Flavoring Agents/analysis , Meat/analysis , Fatty Acids , Odorants/analysis
17.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-38386845

ABSTRACT

Many volatile organic compounds (VOCs) are used to produce various commercial products with aromas mimicking natural products. The VOCs responsible for aromas have been identified from many natural products. The current major strategy is to analyze chemical compositions and aroma qualities of individual VOCs using gas chromatography/mass spectrometry (GC/MS) and GC-olfactometry. However, such analyses cannot determine whether candidate VOCs contribute to the characteristic aroma in mixtures of many VOCs. In this study, we developed a GC/MS-based VOC collection/omission system that can modify the VOC compositions of samples easily and rapidly. The system is composed of GC/MS with a switching unit that can change gas flow routes between MS and a VOC collection device. We first applied this system to prepare gas samples for omission tests, and the aroma qualities of VOC mixtures with and without some VOCs were evaluated by panelists. If aroma qualities were different between the 2 samples, the omitted VOCs were likely key odorants. By collecting VOCs in a gas bag attached to the collection device and transferring some VOCs to MS, specific VOCs could be omitted easily from the VOC mixture. The system could prepare omission samples without chemical identification, preparation of each VOC, and laborious techniques for mixing VOCs, thus overcoming the limitations of previous methods of sample preparation. Finally, the system was used to prepare artificial aromas by replacing VOC compositions between different samples for screening of key odorants. In conclusion, the system developed here can improve aroma research by identifying key odorants from natural products.


Subject(s)
Biological Products , Volatile Organic Compounds , Odorants/analysis , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry/methods , Olfactometry/methods
18.
Food Chem X ; 21: 101121, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38292683

ABSTRACT

Hakka rice wine is produced from grains by co-fermentation with abundant microbes in an open fermentation environment. Indigenous microbiota and enzymes convert the nutrients in grains into flavor compounds through enzymatic biochemical reactions and microbial metabolism. High-throughput sequencing technology revealed that non-Saccharomyces yeasts dominated the traditional fermentation process, with genera such as Kodamaea ohmeri, Candida orthopsilosis, and Trichosporon asteroides forming a dynamic community that highly correlated with the evolution of 80 volatile compounds in Hakka rice wine. Among the 104 volatile compounds detected by GC-MS, 22 aroma-active compounds with relative odor activity values (ROAV) > 1 were quantified, 11 of which made significant contributions (P < 0.05) to the overall aroma and were responsible for the sweet, grainy, and herbal aromas of Hakka rice wine.

19.
Trends Cell Biol ; 34(3): 176-179, 2024 03.
Article in English | MEDLINE | ID: mdl-38008607

ABSTRACT

Ageing is a malleable process influenced by the environment. Recent research reveals that neurons interact with peripheral organs to regulate metabolism and longevity by responding to olfactory cues through specific pathways, such as the unfolded protein response (UPR) and microRNAs. Here, we examine the significance of these findings.


Subject(s)
Longevity , Unfolded Protein Response , Humans , Aging/metabolism , Neurons , Proteostasis
20.
Braz. dent. sci ; 27(1): 1-14, 2024. ilus
Article in English | LILACS, BBO - Dentistry | ID: biblio-1537418

ABSTRACT

Objective: Halitosis is the offensive odor emanated by the oral and nasal cavities and perceived by the individual and/or by other people. Halitosis is a symptom that directly impacts on the social aspects of an individual's life and may be a sign for a systemic disorder in some cases. Material and Methods: A search was conducted on the literature in order to gather the main aspects about halitosis and make a review about the main features necessary to the clinical practice when a professional deals with a patient with halitosis. Results: The information was summarized and discussed with a focus on what clinicians should be aware of when dealing with a patient with halitosis. Conclusion: Halitosis is a prevalent symptom that affects approximately 25% of the individuals. Its classification takes into consideration the origin of the compounds producing the malodor. The diagnosis must take into consideration the various etiological possibilities before defining the treatment. The treatment must be focused on the cause and since there is a wide range of possible causes, halitosis needs a multidisciplinary approach (AU)


Objetivo: Halitose é um cheiro ofensivo expelido pela cavidade bucal e pela cavidade nasal e percebido pelo indivíduo e/ou pelas outras pessoas. A halitose é um sintoma que impacta diretamente aspectos sociais da vida de um indivíduo e pode ser um sinal de alguma desordem sistêmica em alguns casos. Material e Métodos: Uma busca foi feita na literatura para reunir os principais aspectos da halitose e conduzir uma revisão sobre as principais características necessárias à prática clínica quando um profissional lida com um paciente com a queixa de halitose. Resultados: A informação disponível foi sumarizada e discutida com foco naquilo que um clínico deve estar atento quando lida com um paciente com a queixa de halitose presente. Conclusão: A halitose é um sintoma prevalente que afeta aproximadamente 25% dos indivíduos. Sua classificação leva em consideração a origem dos compostos que produzem o mau hálito. O diagnóstico deve levar em conta as várias etiologias possíveis antes de definir um tratamento. O tratamento deve ser focado na causa e, como há uma ampla variedade de possíveis causas, a halitose é um sintoma que precisa de uma abordagem multidisciplina (AU)


Subject(s)
Oral Hygiene , Halitosis , Hydrogen Sulfide , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...