Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834625

ABSTRACT

This study assessed the fundamental physical properties and chemical composition of three specific waste engine oil residue (WEORs) asphalt regenerants. Through dynamic shear rheometer and rolling thin-film oven tests, the performance of aged asphalt was evaluated using three key indicators. Thin-layer chromatography investigations probed the WEOR-induced changes in the aging asphalt components, leading to the creation of two novel asphalt regenerants, WEOR-H and WEOR-G. WEOR-G was developed from WEOR-1, liquid rubber, ultraviolet absorber, light shielding agent, and antioxidant, while WEOR-H was formulated from WEOR-2, aromatic oil, and liquid rubber. The study employed differential scanning calorimetry and conventional laboratory tests to analyze the road performance attributes of Ingevity J type regenerant (J), WEOR-G, and WEOR-H. The results indicated that WEORs increase the saturate and aromatic content in asphalt and partially replenish the missing lightweight components of aged asphalt, moderately improving the three key indicators, though the regenerative effect is restricted. Achieving a full restoration of component proportions within aged asphalt to their initial levels proved unattainable, and direct application of any of the three WEORs as asphalt regenerants is impractical. WEOR-H and WEOR-G demonstrated potential in enhancing aged asphalt binder road performance, outpacing three other WEORs. At a 14% dosage, WEOR-G and WEOR-H could increase the 10 °C ductility to 23.5 and 21.4 cm, respectively, effectively counterbalancing the insufficient ability of WEOR-1 and WEOR-2 to restore the low-temperature performance of aged asphalt. Among the regenerants, WEOR-G, possessing superior regenerative effects, the lowest glass transition temperature, and optimal low-temperature deformation resistance, emerged as the most efficacious. This inquiry furnishes vital data support for future applications of WEOR-G asphalt regenerant.

2.
Foods ; 12(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37174291

ABSTRACT

The State Council of China has called for the comprehensive development and utilization of Acer truncatum resources. However, research on one of its by-products, namely seed oil residue (ASR), from seed oil extraction is seriously insufficient, resulting in a waste of these precious resources. We aimed to optimize the conditions of ultrasound-assisted extraction (UAE) using a response surface methodology to obtain high acetylcholinesterase (AChE) inhibitory components from ASR and to tentatively identify the active metabolites in ASR using non-targeted metabolomics. Based on the results of the independent variables test, the interaction effects of three key extracting variables, including methanol concentration, ultrasonic time, and material-to-liquid ratio, were further investigated using the Box-Behnken design (BBD) to obtain prior active components with high AChE inhibitory activity. UPLC-QTOF-MS combined with a multivariate method was used to analyze the metabolites in ASR and investigate the causes of activity differences. Based on the current study, the optimal conditions for UAE were as follows: methanol concentration of 85.06%, ultrasonic time of 39.1 min, and material-to-liquid ratio of 1.06:10 (g/mL). Under these optimal conditions, the obtained extracts show strong inhibitions against AChE with half maximal inhibitory concentration (IC50) values ranging from 0.375 to 0.459 µg/mL according to an Ellman's method evaluation. Furthermore, 55 metabolites were identified from the ASR extracted using methanol in different concentrations, and 9 biomarkers were subsequently identified as potential compounds responsible for the observed AChE inhibition. The active extracts have potential to be used for the development of functional foods with positive effects on Alzheimer's disease owing to their high AChE inhibition activity. Altogether, this study provides insights into promoting the comprehensive utilization of A. truncatum resources.

3.
Turk J Chem ; 46(4): 1306-1315, 2022.
Article in English | MEDLINE | ID: mdl-37538764

ABSTRACT

In this study, olive oil residue (OR) biomass was pyrolyzed in the presence of bulk MgO (B-MgO), nano-MgO (N-MgO), bulk ZnO (B-ZnO)), and nano-ZnO (N- ZnO) metal oxides at different temperatures (400, 600, and 800 ºC). Significant results were obtained in terms of synthesis gas formation and CO2 reduction. The efficiency distribution of the products obtained as a result of the metal oxide-based pyrolysis process and the effects of metal oxides were examined in detail. Nanometal oxides were synthesized by the hydrothermal method. Characterization of metal oxides was carried out by Brunauer-Emmett-Teller (BET), x-ray powder diffraction (XRD) analysis and scanning-electron microscopy-energy dispersive x-ray (SEM-EDX) techniques. The metal concentration of OR biomass was detected via the x-ray fluorescence (XRF) technique. Tar product properties were evaluated by gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared spectroscopy (FT-IR) analyzes. Analysis results show that pyrolytic tar is very similar to diesel and gasoline as it contains significant concentrations of aliphatic and aromatic hydrocarbons in composition. In addition, the composition of noncondensable gaseous products was determined by micro gas chromatography (micro-GC) analysis.

4.
Bioresour Technol ; 339: 125631, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34332178

ABSTRACT

Critical analysis of thermogravimetric data, characterization of the biomass, and kinetic and thermodynamic analyses are crucial in the design of efficient biomass pyrolysis systems. In this study, characterization, kinetic and thermodynamic analysis was performed for pyrolysis of mustard oil residue (MOR). Thermogravimetric analysis (TGA) with differential thermal analysis (DTA) was applied to study thermal decomposition behaviour of MOR at 10, 20, and 30 °C/min. FTIR and XRD analyses were used to characterize MOR. Average activation energy estimated from employed isoconversional methods was ≈155 kJ/mol. Variation in activation energy was found to be statistically insignificant as suggested by p-value of 0.992 by one-way ANOVA method. The pyrolytic temperature for MOR ranged from 234 to 417 °C. Reaction mechanism predicted as R3 (third order) and D3 (three dimensional). Thermodynamic parameters (ΔHα, ΔGα, and ΔSα) showed that endothermicity increased from 0.2 to 0.8 conversion and product had highest energy at 0.8 conversion.


Subject(s)
Pyrolysis , Biomass , Kinetics , Mustard Plant , Plant Oils , Thermodynamics , Thermogravimetry
5.
J Agric Food Chem ; 69(8): 2438-2443, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33591736

ABSTRACT

The seed oil of Prinsepia utilis is extensively used as an edible oil by the nationalities of Naxi, Tibetan, and Mosuo in China, which is particularly good for beauty care and has a health protection function. A large amount of industrial waste is thrown away during the production process of seed oil. Therefore, to recover bioactive compounds from the oil residue of P. utilis is environmentally friendly and economically important. For this purpose, the chemical constituents of the P. utilis oil residue were investigated in our research, and five new compounds, prinsepicyanosides F-I (1-4) and prinamoside A (5), together with 16 known compounds (6-21) were isolated. The structures of the new compounds (1-5) were unambiguously confirmed by extensive spectroscopic techniques. Preliminary in vitro pharmacological studies showed that the hydroxynitrile glucosides (3, 9, and 10) exhibited weak α-glucosidase inhibitory activity. To a certain extent, our research provides some evidence for the pharmacological function of γ-hydroxynitrile glucosides and proposes new ideas for recycling of the oil residue of P. utilis.


Subject(s)
Glucosides , Rosaceae , China , Seeds
6.
Environ Technol ; 42(7): 1013-1022, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31378165

ABSTRACT

Pyrolysis of oil sludge from the petroleum industry in contact with three mesoporous zeolite catalysts (CBV 720, 760 and 780) was carried out at 450°C to obtain oil rich in paraffin. The properties of the catalysts were characterized by XRD, XRF, NH3-TPD, FT-IR, TGA and nitrogen ad/desorption isotherms, while the pyrolysis oil was analysed by GC-MS. The products obtained in the presence of mesoporous zeolites showed selectivity for conversion of light hydrocarbons with decreased content of aromatic compounds. The homogeneous porosity distribution of the CBV 780 was the determining factor in catalytic pyrolysis. The residue could be treated by pyrolysis using mesoporous zeolite. The use of this catalyst produced 56% oil fraction with the highest yield of light hydrocarbons (96%). Compared with the thermal pyrolysis of this waste, the use of mesoporous zeolitic catalysts increased the production of light hydrocarbons and reduced the production of aromatic compounds in the pyrolysis oil from sludge.


Subject(s)
Pyrolysis , Zeolites , Catalysis , Hot Temperature , Oil and Gas Industry , Paraffin , Sewage , Spectroscopy, Fourier Transform Infrared
7.
Sci Total Environ ; 466-467: 906-13, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23973553

ABSTRACT

The effect of soil amendment with different organic residues from olive oil production on the sorption and leaching of two pesticides used in rice crops (bentazone and tricyclazole) was compared in order to understand their behavior and to improve soil properties by recycling an abundant agricultural residue in Andalucía (S. Spain). A residue from olive oil production (AJ), the organic compost derived from this organic waste (CA) and a biochar (BA) made from CA were used. A soil devoted to rice cultivation, IFAPA (I), was amended at 2% (w/w) of each amendment individually (I+AJ, I+CA and I+BA). In order to evaluate the effect of dissolved organic matter (DOM) from these amendments on bentazone and tricyclazole behavior, the DOM from the amendments was extracted, quantified and characterized by fluorescence spectroscopy and FT-IR. The affinity of DOM for soil surfaces was evaluated with (I) soil and two other soils of different physicochemical properties, ARCO (A) and GUAD (G). These studies revealed differences in DOM quantity, quality and affinity for the used soils among amendments which can explain the different sorption behavior observed for tricyclazole in the amended soils. Leaching assays under saturated/unsaturated conditions revealed a slight delay of bentazone in I+CA and I+BA soils when compared to I+AJ, that can be related to the higher DOM content and much lower specific surface area of AJ. In contrast, tricyclazole was not detected in any of the leachates during the leaching assay. Extraction of tricyclazole residues from soil columns showed that the fungicide did not move below 5cm in the higher sorptive systems (I+CA, I+BA). The sorption of DOM from amendments on soil during the transport process can decrease the mobility of the fungicide by changing the physicochemical properties of the soil surface whose behavior may be dominated by the adsorbed DOM.

8.
Braz. arch. biol. technol ; 52(6): 1571-1578, Nov.-Dec. 2009. tab, ilus, graf
Article in English | LILACS | ID: lil-539123

ABSTRACT

In this study, the potential for using an inoculum composed of a mixed-culture of bacteria and fungi, isolated from a landfarming at the Paulínia Oil Refinery, Brazil, to degrade oil residues generated in the process of petroleum refinement was investigated. The isolation of these microorganisms was carried out beforehand, assuming that they would be better adapted to petroleum hydrocarbons, as the landfarming consisted of an area impacted by the deposit of such compounds. The Bartha and Pramer respirometric test was used to measure the rate of biodegradation of the hydrocarbons by the mixed-culture of microorganisms via the evolution of CO2. The results obtained with respect to the efficiency of biodegradation showed no significant differences (P>0.05), indicating no increase in the biodegradation process using the inoculum. The addition of nutrients (N, P, K) also did not contribute to an increase in biodegradation of the oil residue studied.


Neste estudo foi investigado o potencial de um inóculo composto de cultura mista de bactérias e fungos, isolados do landfarming da Refinaria de Paulínia, Brasil, em degradar resíduos oleosos gerados no processo de refinamento de petróleo. O isolamento desses microrganismos foi realizado previamente, supondo-se que estejam melhor adaptados aos hidrocarbonetos de petróleo uma vez que o landfarming consiste em área impactada por deposição de tais compostos. Utilizou-se o teste respirométrico de Bartha e Pramer no intuito de verificar a taxa de biodegradação dos hidrocarbonetos pela cultura mista de microrganismos através da evolução de CO2. Os resultados obtidos para a eficiência da biodegradação não apresentaram diferença estatisticamente significativa (P>0.05) indicando que não houve aumento do processo de biodegradação com o uso do inóculo. A adição de nutrientes (N, P, K) tampouco contribuiu para aumentar a biodegradação do resíduo oleoso estudado.

SELECTION OF CITATIONS
SEARCH DETAIL
...