Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters











Publication year range
1.
J Hum Evol ; 193: 103548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896896

ABSTRACT

We report a new Paleogene primate community discovered in the uppermost part of the Samlat Formation outcropping on the continental shore of the Rio de Oro, east of the Dakhla peninsula (in the south of Morocco, near the northern border of Mauritania). Fossils consist of isolated teeth, which were extracted by wet screening of estuarine sediments (DAK C2) dating from the earliest Oligocene (ca. 33.5 Ma). These dental remains testify to the presence of at least eight primate species, documenting distinct families, four of which are among the Anthropoidea (Oligopithecidae [Catopithecus aff. browni], Propliopithecidae [?Propliopithecus sp.], Parapithecidae [Abuqatrania cf. basiodontos], and Afrotarsiidae [Afrotarsius sp.]) and four in the Strepsirrhini (a Djebelemuridae [cf. 'Anchomomys' milleri], a Galagidae [Wadilemur cf. elegans], a possible lorisiform [Orogalago saintexuperyi gen. et sp. nov.], and a strepsirrhine of indeterminate affinities [Orolemur mermozi gen. et sp. nov.]). This record of various primates at Dakhla represents the first Oligocene primate community from Northwest Africa, especially from the Atlantic margin of that landmass. Considering primates plus rodents (especially hystricognaths), the taxonomic proximity at the generic (even specific) level between DAK C2 (Dakhla) and the famous Egyptian fossil-bearing localities of the Jebel Qatrani Formation (Fayum Depression), either dating from the latest Eocene (L-41) or from the early Oligocene, suggests the existence of an east-west 'trans-North African' environmental continuum during the latest Eocene-earliest Oligocene time interval. The particularly diverse mammal fauna from DAK C2, recorded within the time window of global climate deterioration characterizing the Eocene/Oligocene transition, suggests that this tropical region of northwest Africa was seemingly less affected, if at all, by the cooling and associated paleoenvironmental and biotic changes documented at that time or at least that the effects were delayed. The expected densely forested paleoenvironment bordering the western margin of North Africa at the beginning of the early Oligocene probably offered better tropical refugia than higher latitudes or more inland areas during the cooling episode.


Subject(s)
Fossils , Primates , Animals , Fossils/anatomy & histology , Primates/anatomy & histology , Paleontology , Environment , Tooth/anatomy & histology
2.
Plant Divers ; 46(1): 101-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343597

ABSTRACT

Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau, China relies on discovering new plant fossils. The Qaidam Basin has long been regarded as an ideal 'field laboratory' to investigate the paleoclimate and paleobiological evolution of the northern Tibetan Plateau. However, fossil angiosperms from the Qaidam Basin are rare, and our knowledge of its paleovegetation is poor. Here, we report fossil leaves and fruits of Betulaceae found from the Oligocene Shangganchaigou Formation of northwestern Qaidam Basin (Huatugou area). Comparative morphological analysis led us to assign the fruits to the Betula subgenus Betula and the leaves to Carpinus grandis. These findings, together with other reported fossil plants from the same locality, reveal a close floristic linkage between the Qaidam Basin and Europe during the Oligocene. The northern pathway of this floristic exchange may have crossed through the Qaidam Basin during the late Paleogene. This floristic linkage may have been facilitated by the continuous narrowing of the Turgai Strait and stronger westerlies, which transported moisture and provided favorable climatic conditions. Indeed, fossil plants collected from the Qaidam Basin suggest that during the Oligocene this region had warm and humid deciduous broad-leaf forest, which differs from the region's modern vegetation and indicates that the Qaidam Basin may have been a suitable region for these plants to flourish and spread during the Oligocene.

3.
Evol Anthropol ; 33(3): e22022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38270328

ABSTRACT

Although the evolutionary history of anthropoid primates (monkeys, apes, and humans) appears relatively well-documented, there is limited data available regarding their origins and early evolution. We review and discuss here the earliest records of anthropoid primates from Asia, Africa, and South America. New fossils provide strong support for the Asian origin of anthropoid primates. However, the earliest recorded anthropoids from Africa and South America are still subject to debate, and the early evolution and dispersal of platyrhines to South America remain unclear. Because of the rarity and incomplete nature of many stem anthropoid taxa, establishing the phylogenetic relationships among the earliest anthropoids remains challenging. Nonetheless, by examining evidence from anthropoids and other mammalian groups, we demonstrate that several dispersal events occurred between South Asia and Afro-Arabia during the middle Eocene to the early Oligocene. It is possible that a microplate situated in the middle of the Neotethys Ocean significantly reduced the distance of overseas dispersal.


Subject(s)
Anthropology, Physical , Biological Evolution , Fossils , Phylogeny , Animals , Africa , Asia , South America , Humans , Primates/classification
4.
Plants (Basel) ; 13(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256828

ABSTRACT

Liquidambar L. is a significant constituent of the Cenozoic flora in the Northern Hemisphere. Currently, this genus exhibits a discontinuous distribution across Asia and North America, with the center of diversity being in southeastern Asia. This study presents the first occurrence of Liquidambar in the Oligocene of South China. Fossil sweetgum infructescences, associated pollen, and leaves have been found in the Nanning Basin, Guangxi. A new species, Liquidambar nanningensis sp. nov., is described based on the morphological and anatomical characteristics of three-dimensionally preserved infructescences. The Liquidambar fossils from the Nanning Basin show a combination of features indicative of the former genera of Altingiaceae, Altingia, Liquidambar s. str., and Semiliquidambar. The new occurrence expands the taxonomic and morphological diversity of the Paleogene Liquidambar species in South China.

5.
PeerJ ; 11: e16690, 2023.
Article in English | MEDLINE | ID: mdl-38144178

ABSTRACT

Background: Tethysbaena are small peracarid crustaceans inhabiting extreme environments such as subterranean lakes and thermal springs, represented by endemic species found around the ancient Tethys, including the Mediterranean, Arabian Sea, Mid-East Atlantic, and the Caribbean Sea. Two Tethysbaena species are known from the Levant: T. relicta, found along the Dead Sea-Jordan Rift Valley, and T. ophelicola, found in the Ayyalon cave complex in the Israeli coastal plain, both belonging to the same species-group based on morphological cladistics. Along the biospeleological research of the Levantine subterranean fauna, three biogeographic hypotheses determining their origins were proposed: (1) Pliocenic transgression, (2) Mid-late Miocenic transgression, and (3) The Ophel Paradigm, according to which these are inhabitants of a chemosynthetic biome as old as the Cambrian. Methods: Tethysbaena specimens of the two Levantine species were collected from subterranean groundwaters. We used the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear ribosomal 28S (28S rRNA) gene to establish the phylogeny of the Levantine Tethysbaena species, and applied a molecular clock approach for inferring their divergence times. Results: Contrary to the morphological cladistic-based classification, we found that T. relicta shares an ancestor with Tethysbaena species from Oman and the Dominican Republic, whereas the circum-Mediterranean species (including T. ophelicola) share another ancestor. The mean age of the node linking T. relicta from the Dead Sea-Jordan Rift Valley and Tethysbaena from Oman was 20.13 MYA. The mean estimate for the divergence of T. ophelicola from the Mediterranean Tethysbaena clade dated to 9.46 MYA. Conclusions: Our results indicate a two-stage colonization of Tethysbaena in the Levant: a late Oligocene transgression, through a marine gulf extending from the Arabian Sea, leading to the colonization of T. relicta in the Dead Sea-Jordan Rift Valley, whereas T. ophelicola, originating from the Mesogean ancestor, inhabited anchialine caves in the coastal plain of Israel during the Mid-Miocene.


Subject(s)
Crustacea , Ecosystem , Animals , Phylogeography , Phylogeny , Dominican Republic
6.
J Hum Evol ; 185: 103452, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935595

ABSTRACT

Ekgmowechashala is a poorly documented but very distinctive primate known only from the late early Oligocene (early Arikareean) of western North America. Because of its highly autapomorphous dentition and spatiotemporal isolation, the phylogenetic and biogeographic affinities of Ekgmowechashala have long been debated. Here, we describe the oldest known fossils of Ekgmowechashala from the Brown Siltstone Beds of the Brule Formation, White River Group of western Nebraska. We also describe a new ekgmowechashaline taxon from the Nadu Formation (late Eocene) in the Baise Basin of Guangxi Zhuang Autonomous Region in southern China. Phylogenetic analysis suggests that North American Ekgmowechashala and the new Chinese taxon are sister taxa that are nested within a radiation of southern Asian adapiforms that also includes Gatanthropus, Muangthanhinius, and Bugtilemur. The new Chinese ekgmowechashaline helps fill the considerable disparity in dental morphology between Ekgmowechashala and more primitive ekgmowechashalids known from southern Asia. Our study underscores the fundamental role of southern Asia as a refugium for multiple primate clades during the cooler and drier climatic regime that prevailed after the Eocene-Oligocene transition. The colonization of North America by Ekgmowechashala helps define the beginning of the Arikareean Land Mammal Age and corresponds to an example of the Lazarus effect, whereby a taxon (in this case, the order Primates) reappears suddenly in the fossil record after a lengthy hiatus.


Subject(s)
Fossils , Primates , Animals , Phylogeny , China , Nebraska , Primates/anatomy & histology , North America , Mammals
7.
Plants (Basel) ; 12(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005749

ABSTRACT

Recently, the evolutionary history of the Caribbean mangroves has been reconsidered using partial palynological databases organized by the time intervals of interest, namely Late Cretaceous to Eocene for the origin, the Eocene-Oligocene transition for major turnover and Neogene to Quaternary for diversification. These discussions have been published in a set of sequential papers, but the raw information remains unknown. This paper reviews all the information available and provides the first comprehensive and updated compilation of the abovementioned partial databases. This compilation is called CARMA-F (CARibbean MAngroves-Fossil) and includes nearly 90 localities from the present and past Caribbean coasts, ranging from the Late Cretaceous to the Pliocene. Details on the Quaternary localities (CARMA-Q) will be published later. CARMA-F lists and illustrates the fossil pollen from past mangrove taxa and their extant representatives, and includes a map of the studied localities and a conventional spreadsheet with the raw data. The compilation is the most complete available for the study of the origin, evolution and diversification of Caribbean mangroves, and is open to modifications for adapting it to the particular interests of each researcher.

8.
Ann Bot ; 132(4): 753-770, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37642245

ABSTRACT

BACKGROUND AND AIMS: CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS: Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS: The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.


Subject(s)
Carbon Dioxide , Photosynthesis , Plants , Phylogeny , Plants/classification , Plants/genetics , Plants/metabolism , Water
9.
Plant Divers ; 45(4): 434-445, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37601538

ABSTRACT

Quercus is the largest genus within the Fagaceae and has a rich fossil record. Most of the fossil material is attributed to the subgenus Quercus based on leaves, pollen or rarely acorns and nuts. Fossil records of Q. section Cyclobalanopsis characterized by ring-cupped acorns are relatively few and especially those described based on nuts are scant. In this study, we described four new species of Quercus section Cyclobalanopsis based on mummified acorns and nuts: Q. paleodisciformis X.Y. Liu et J.H. Jin sp. nov., Q. paleohui X.Y. Liu et J.H. Jin sp. nov., Q. nanningensis X.Y. Liu et J.H. Jin sp. nov. and Q. yongningensis X.Y. Liu et J.H. Jin sp. nov. These species closely resemble the extant species Q. disciformis, Q. hui, Q. kerrii, and Q. dinghuensis. The occurrence of Q. section Cyclobalanopsis in the Oligocene stratum of Guangxi, South China, suggests that the section has diversified within its extant distribution center since the Oligocene. By combining records from other areas, we propose that the section first appeared in the middle Eocene of East Asia (Sino-Japan), has diversified in situ with a few elements scattering into West Asia and southern Europe since the Oligocene and Pliocene, respectively, and finally became restricted in East Asia since the Pleistocene. This indicates that the section originated and diversified in East Asia, before spreading into West Asia no later than the Oligocene and into southern Europe by the Pliocene. Subsequently it disappeared from South Europe and West Asia due to the appearance of the (summer dry) Mediterranean climate and widespread cooling during the Pleistocene.

10.
Proc Biol Sci ; 290(2000): 20222347, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37282533

ABSTRACT

Despite the vast diversity of phytophagous insects that feed on vascular plants (tracheophytes), insects that feed on bryophytes remain understudied. Agromyzidae, one of the most species-rich phytophagous clades in Diptera, consists mainly of leaf-mining species that feed on tracheophytes. However, a recent discovery of thallus-mining species on liverworts and hornworts within the Liriomyza group of Phytomyzinae provides an opportunity to study host shifts between tracheophytes and bryophytes. This study aimed to explore the origin and diversification of thallus-miners and estimate the pattern and timing of host shifts. Phylogenetic analysis of Phytomyzinae has revealed that the thallus-mining agromyzids formed a separate clade, which was sister to a fern pinnule-miner. The diversification of bryophyte-associated agromyzids since the Oligocene involved multiple host shifts across various bryophyte taxa. The diversification of the thallus-mining Phytoliriomyza may have occurred at the same time as the leaf-mining agromyzid flies on herbaceous plants, indicating a dynamic history of interactions between bryophytes and herbivores in angiosperms-dominated ecosystems.


Subject(s)
Anthocerotophyta , Bryophyta , Diptera , Hepatophyta , Animals , Phylogeny , Ecosystem
11.
PeerJ ; 11: e15576, 2023.
Article in English | MEDLINE | ID: mdl-37377790

ABSTRACT

Odontocetes first appeared in the fossil record by the early Oligocene, and their early evolutionary history can provide clues as to how some of their unique adaptations, such as echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht Formation are described further increasing our understanding of the richness and diversity of early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon (Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents one of the best known simocetids, offering new information on the cranial and dental morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of this group may not have had the capability of ultrasonic hearing, at least during their early ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 3 m, which places it as the largest known simocetid, and amongst the largest Oligocene odontocetes. The new specimens described here add to a growing list of Oligocene marine tetrapods from the North Pacific, further promoting faunistic comparisons across other contemporaneous and younger assemblages, that will allow for an improved understanding of the evolution of marine faunas in the region.


Subject(s)
Cetacea , Classification , Fossils , Whales , Washington , Whales/anatomy & histology , Whales/classification , Cetacea/anatomy & histology , Cetacea/classification , Species Specificity , Fossils/anatomy & histology , Phylogeny , Skull/anatomy & histology , Tooth/anatomy & histology
12.
PeerJ ; 11: e15140, 2023.
Article in English | MEDLINE | ID: mdl-37065698

ABSTRACT

Objectives: This study presents the Integrated Leaf Trait Analysis (ILTA), a workflow for the combined application of methodologies in leaf trait and insect herbivory analyses on fossil dicot leaf assemblages. The objectives were (1) to record the leaf morphological variability, (2) to describe the herbivory pattern on fossil leaves, (3) to explore relations between leaf morphological trait combination types (TCTs), quantitative leaf traits, and other plant characteristics (e.g., phenology), and (4) to explore relations of leaf traits and insect herbivory. Material and Methods: The leaves of the early Oligocene floras Seifhennersdorf (Saxony, Germany) and Suletice-Berand (Ústí nad Labem Region, Czech Republic) were analyzed. The TCT approach was used to record the leaf morphological patterns. Metrics based on damage types on leaves were used to describe the kind and extent of insect herbivory. The leaf assemblages were characterized quantitatively (e.g., leaf area and leaf mass per area (LMA)) based on subsamples of 400 leaves per site. Multivariate analyses were performed to explore trait variations. Results: In Seifhennersdorf, toothed leaves of TCT F from deciduous fossil-species are most frequent. The flora of Suletice-Berand is dominated by evergreen fossil-species, which is reflected by the occurrence of toothed and untoothed leaves with closed secondary venation types (TCTs A or E). Significant differences are observed for mean leaf area and LMA, with larger leaves tending to lower LMA in Seifhennersdorf and smaller leaves tending to higher LMA in Suletice-Berand. The frequency and richness of damage types are significantly higher in Suletice-Berand than in Seifhennersdorf. In Seifhennersdorf, the evidence of damage types is highest on deciduous fossil-species, whereas it is highest on evergreen fossil-species in Suletice-Berand. Overall, insect herbivory tends to be more frequently to occur on toothed leaves (TCTs E, F, and P) that are of low LMA. The frequency, richness, and occurrence of damage types vary among fossil-species with similar phenology and TCT. In general, they are highest on leaves of abundant fossil-species. Discussion: TCTs reflect the diversity and abundance of leaf architectural types of fossil floras. Differences in TCT proportions and quantitative leaf traits may be consistent with local variations in the proportion of broad-leaved deciduous and evergreen elements in the ecotonal vegetation of the early Oligocene. A correlation between leaf size, LMA, and fossil-species indicates that trait variations are partly dependent on the taxonomic composition. Leaf morphology or TCTs itself cannot explain the difference in insect herbivory on leaves. It is a more complex relationship where leaf morphology, LMA, phenology, and taxonomic affiliation are crucial.


Subject(s)
Plant Leaves , Plants , Animals , Plant Leaves/anatomy & histology , Plants/anatomy & histology , Phenotype , Fossils , Herbivory , Insecta
13.
Microorganisms ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37110249

ABSTRACT

Oligocene waters are widely recognized as excellent sources of drinking water. Due to the belief in their good quality, the water from Oligocene intakes in Warsaw, Poland, is made available to users without prior treatment or disinfection. The present study aimed at assessing possible microbiological risks associated with the use of this water. The occurrence of microbiological contaminants in selected intakes was evaluated, in addition to an assessment of possible changes in the microbiological quality of the water under typical storage conditions. The possibility of antibiotic resistance in bacteria isolated from Oligocene water samples was also investigated, as was their sensitivity to selected disinfectants. A small number of bacteria-27.0 ± 60.8 CFU/cm3 and 3.0 ± 3.0 CFU/cm3-were found in Oligocene water intakes for psychrophilic and mesophilic bacteria, respectively. Fecal bacteria were not detected. Bacteria present in Oligocene waters showed the ability to multiply intensively during standard water storage; this was especially true for mesophilic bacteria in water stored at room temperature. In some samples, bacterial counts reached 103-104 CFU/cm3 after 48 h. Almost all bacterial isolates were resistant to the commonly used antibiotics: ampicillin, vancomycin and rifampicin. The bacteria were also insensitive to some disinfectants.

14.
Proc Natl Acad Sci U S A ; 120(15): e2214558120, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37011203

ABSTRACT

The modern pattern of the Asian monsoon is thought to have formed around the Oligocene/Miocene transition and is generally attributed to Himalaya-Tibetan Plateau (H-TP) uplift. However, the timing of the ancient Asian monsoon over the TP and its response to astronomical forcing and TP uplift remains poorly known because of the paucity of well-dated high-resolution geological records from the TP interior. Here, we present a precession-scale cyclostratigraphic sedimentary section of 27.32 to 23.24 million years ago (Ma) during the late Oligocene epoch from the Nima Basin to show that the South Asian monsoon (SAM) had already advanced to the central TP (32°N) at least by 27.3 Ma, which is indicated by cyclic arid-humid fluctuations based on environmental magnetism proxies. A shift of lithology and astronomically orbital periods and amplified amplitude of proxy measurements as well as a hydroclimate transition around 25.8 Ma suggest that the SAM intensified at ~25.8 Ma and that the TP reached a paleoelevation threshold for enhancing the coupling between the uplifted plateau and the SAM. Orbital short eccentricity-paced precipitation variability is argued to be mainly driven by orbital eccentricity-modulated low-latitude summer insolation rather than glacial-interglacial Antarctic ice sheet fluctuations. The monsoon data from the TP interior provide key evidence to link the greatly enhanced tropical SAM at 25.8 Ma with TP uplift rather than global climate change and suggest that SAM's northward expansion to the boreal subtropics was dominated by a combination of tectonic and astronomical forcing at multiple timescales in the late Oligocene epoch.

15.
PeerJ ; 10: e14167, 2022.
Article in English | MEDLINE | ID: mdl-36389401

ABSTRACT

Diplocynodon levantinicum Huene & Nikoloff, 1963 was described based on few bone fragments from the West-Maritsa lignite basin of Central Bulgaria. Huene & Nikoloff, 1963 assumed a late Pliocene age, implying that this species represents the stratigraphically youngest crocodilian of Europe. In this current study, we re-evaluate the stratigraphy of the West-Maritsa Basin and conclude a late Oligocene age of ~26 Ma for the Kipra coal-seam, the fossiliferous horizon. Furthermore, topotypical and undescribed D. levantinicum specimens are accessible now and allowed for a deeper taxonomic and phylogenetic analysis. A comparison with other Diplocynodon species reveals D. levantinicum as a valid species, having (1) a long suborbital fenestra, (2) a very short dentary symphysis, (3) a large gap between the first and second dentary alveolus, (4) an occlusion pit in line with the tooth row posterior to the 14th dentary alveolus, (5) a sulcus lateral to the glenoid fossa and, (6) a lingual foramen for the articular artery situated entirely on the surangular. The phylogenetic analyses find D. levantinicum deeply nested inside the Diplocynodontinae subfamily. After the disappearance of the Paratethyan influence (Solenovian regional stage) in the Upper Thrace Basin this species has roamed during the late Oligocene extensive freshwater lake and swamp ecosystems represented by the Maritsa Formation. Diplocynodon levantinicum represents the only nominal Diplocynodon taxon of late Oligocene (Chattian) age.


Subject(s)
Ecosystem , Fresh Water , Phylogeny , Bulgaria , Europe
16.
Plant Divers ; 44(4): 406-416, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35967257

ABSTRACT

Recent paleobotanical investigations in Vietnam provide a good opportunity to improve our understanding of the biodiversity and paleoclimatic conditions in the geological past of Southeast Asia. Palms (Arecaceae) are a diverse family of typical thermophilous plants with a relatively low tolerance for freezing. In this study, we describe well-preserved fossil palm leaves from the Oligocene Dong Ho Formation of Hoanh Bo Basin, northern Vietnam. Characters of the fossil leaves, such as a fan-shaped costapalmate lamina, an unarmed petiole, a costa slightly enlarged at the base that then tapers distally into the blade, and well-preserved amphistomatic leaves with cuticles, suggest that they represent a new fossil species, which we herein designate Sabalites colaniae A. Song, T. Su, T. V. Do et Z.K. Zhou sp. nov. Together with other paleontological and palaeoclimatic evidence, we conclude that a warm climate prevailed in northern Vietnam and nearby areas during the Oligocene.

17.
Mol Phylogenet Evol ; 175: 107578, 2022 10.
Article in English | MEDLINE | ID: mdl-35809854

ABSTRACT

Molecular phylogenetics and the application of species delimitation methods have proven useful in addressing limitations associated with morphology based taxonomy and have highlighted the inconsistencies in the current taxonomy for many groups. For example, the genus Chamaeleo, which comprises 14 species with large distributions across mainland Africa and parts of Eurasia, exhibits relatively minor phenotypic differentiation between species, leading to speculation regarding the presence of cryptic diversity in the genus. Therefore, the aims of the present study were to construct a robust and comprehensive phylogeny of the genus and highlight potential species-level cryptic diversity. Additionally, we sought to ascertain the most likely biogeographic origin of the genus and understand its spatio-temporal diversification. Accordingly, we made use of species delimitation methods (Bayesian and divergence based) to investigate the extent of cryptic diversity in Chamaeleo, and applied an ancestral area reconstruction to examine the biogeographic origin of the group. Our phylogenetic analyses suggested the presence of at least 18 taxa within Chamaeleo. Notably, three taxa could be recognised within C. dilepis, none of which are equivalent in context with any of the currently described subspecies. There were also three taxa within C. gracilis and two within C. anchietae. The single available tissue specimen identified as C. necasi was embedded within the C. gracilis clade. Our ancestral area reconstruction points to a southern African/Zambezian origin for Chamaeleo, with diversification beginning during the cooling and aridification of Africa that characterised the Oligocene Epoch, ca. 34-23 Mya (Million years ago). Species-level diversification began in the Miocene Epoch (ca. 23-5 Mya), possibly tracking the aridification that triggered the shift from forest to more open, mesic savanna for most clades, but with tectonic events influencing speciation in a Palearctic clade. These findings lay the foundation for a future integrative taxonomic re-evaluation of Chamaeleo, which will be supported with additional lines of evidence before implementing any taxonomic changes.


Subject(s)
Forests , Africa, Southern , Bayes Theorem , Phylogeny , Phylogeography
18.
PeerJ ; 9: e12074, 2021.
Article in English | MEDLINE | ID: mdl-34721955

ABSTRACT

BACKGROUND: The rich rodent assemblages from the Eocene-Oligocene deposits of the Jebel Qatrani Formation (Fayum Depression, Egypt) have important implications for our understanding of the origin and paleobiogeography of Hystricognathi, a diverse clade that is now represented by the Afro-Asiatic Hystricidae, New World Caviomorpha, and African Phiomorpha. METHODS: Here we present previously undescribed material of the enigmatic hystricognath clade Phiocricetomyinae, from two stratigraphic levels in the lower sequence of the Jebel Qatrani Formation-a new genus and species (Qatranimys safroutus) from the latest Eocene Locality 41 (~34 Ma, the oldest and most productive quarry in the formation) and additional material of Talahphiomys lavocati from that species' type locality, early Oligocene Quarry E (~31-33.2 Ma). RESULTS: The multiple specimens of Qatranimys safroutus from L-41 document almost the entire lower and upper dentition, as well as mandibular fragments and the first cranial remains known for a derived phiocricetomyine. Specimens from Quarry E allow us to expand comparisons with specimens from Libya (late Eocene of Dur at-Talah and early Oligocene of Zallah Oasis) that have been placed in T. lavocati, and we show that the Dur at-Talah and Zallah specimens do not pertain to this species. These observations leave the Fayum Quarry E as the only locality where T. lavocati occurs.

19.
Innovation (Camb) ; 2(2): 100110, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34557760

ABSTRACT

The evolution of the Asian monsoon from the Late Oligocene to the Early Miocene is poorly understood. Here, we first reconstruct the precipitation data of central Tibet during 26-16 million years ago (Ma), applying the coexistence approach to sedimentary pollen data, and detect an intensified Asian monsoon with ∼1.35 Ma and ∼0.33 Ma cycles. Paleoclimate modeling is used to show the importance of paleogeographic location in the development of the paleomonsoon. In addition, the results of spectral analysis suggest that the fluctuations in the Asian monsoon during 26-16 Ma can be attributed to the long-period cyclicities in obliquity (∼1.2 Ma). These findings provide climate data that can be used to understand the Asian monsoon evolution during the Late Oligocene to Early Miocene and highlight the effects of paleogeographic patterns and long-period orbital forcings on the tectonic-scale evolution of the Asian monsoon.

20.
PeerJ ; 9: e11418, 2021.
Article in English | MEDLINE | ID: mdl-34131517

ABSTRACT

A new ellimmichthyiform, Guiclupea superstes, gen. et sp. nov., from the Oligocene Ningming Formation of Ningming Basin, Guangxi Zhuang Autonomous Region, South China is described herein. With relatively large body size, parietals meeting at the midline, anterior ceratohyal with a beryciform foramen in the center, a complete predorsal scutes series of very high number and about equally-size scutes with radiating ridges on dorsal surface, first preural centrum unfused with first uroneural but fused with the parhypural, and first ural centrum of roughly the same size as the preural centrum, Guiclupea superstes cannot be assigned to the order Clupeiformes. The phylogenetic analyses using parsimony and Bayesian inference methods with Chanos/Elops as outgroup respectively suggests that the new form is closer to ellimmichthyiform genus Diplomystus than to any other fishes, although there are some discrepancies between the two criteria and different outgroups used. It shares with Diplomystus the high supraoccipital crest, pelvic-fin insertion in advance of dorsal fin origin, and the number of predorsal scutes more than 20. The new form represents the youngest ellimmichthyiform fish record in the world. Its discovery indicates that the members of the Ellimmichthyiformes had a wider distribution range and a longer evolutional history than previously known.

SELECTION OF CITATIONS
SEARCH DETAIL