Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.592
Filter
1.
Neotrop Entomol ; 53(4): 738-745, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955945

ABSTRACT

Palpita forficifera Munroe, 1959 (Lepidoptera: Crambidae) is considered the main pest of the olive tree (Olea europaea L., Oleaceae) in Brazil and Uruguay. The aim of this work was to study the mating and oviposition behavior of P. forficifera in the field and laboratory. In the field, the sex emitting the mating pheromone was determined and in the laboratory, the rate of emergence of males and females; the age, time and duration of mating; number of copulations and oviposition time of P. forficifera were recorded. The field results showed that it was possible to capture up to five males per trap in just one night in traps with the presence of female P. forficifera. Copulation occurs between the seventh and twenty-third day of life and is most frequent during the third and sixth hours of scotophase. The average duration of the first copulation was 174 min, with 35% of couples recopulating, and there were cases of up to five copulations. Oviposition times were concentrated between 20:00 and 02:00. The results obtained provide insight into the reproductive behavior of P. forficifera and are useful for future studies aimed at identifying the sex pheromone to improve monitoring of the pest in olive orchards.


Subject(s)
Oviposition , Sexual Behavior, Animal , Animals , Female , Male , Lepidoptera/physiology , Moths/physiology
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 608-635, jul. 2024. tab, ilus, graf
Article in English | LILACS | ID: biblio-1538071

ABSTRACT

Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.


Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.


Subject(s)
Olive Oil/chemistry , Geography , Plant Extracts/chemistry , Chile , Plant Structures/chemistry
3.
Biodegradation ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954367

ABSTRACT

Evaluating industrial wastes in the system with minimum preprocessing and generation economically valuable products from them have critical importance. In this regard, especially cheap, wieldy, and readily available catalysts have been researched to increase variety of useful products in pyrolysis systems, to reduce process time, and to increase quality and diversity of products. Therefore, in this study, marble sludge (named K1) was evaluated as catalyst at different dosages (10%, 20%, 30%, 50%) and pyrolysis temperatures (300, 500, 700 °C) in olive pomace (OP) pyrolysis and; the potential green applications of produced new biochars at new usage areas with different purposes based on characteristics were investigated. ANOVA test results showed that temperature and catalysts ratio had significant effect on pyrolysis product yields since significance value for K1 and temperature was lower than 0.05 for pyrolysis products. OP-K1 biochars had alkaline properties and high earth metal quantities. Moreover, increment in K1 ratio and temperature resulted in decrement of the biochar surface acidity. Therefore, it can be indicated that these biochars can have a potential usage for anaerobic digestion processes, lithium-ion batteries, and direct carbon solid oxide fuel cell (DC-SOFC) but further electrochemical property test should be performed. Moreover, produced biochars can be alternative fuels in some processes instead of coal since they have low S content and high heat values. Consequently, it is foreseen that produced biochars will have an important place in the development of potential usage areas with a new and environmentally friendly approach in different areas apart from the conventional uses of catalytic pyrolysis chars.

4.
Nutr Rev ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001794

ABSTRACT

CONTEXT: Olive oil is a vegetable oil that provides health benefits, including a reduction in free radicals and total cholesterol and prevention of chronic diseases. The escalating incidence of chronic diseases presents a substantial challenge to public health, prompting numerous studies to assess these health-related effects. Despite several systematic reviews and meta-analyses summarizing the association between olive oil consumption and specific health outcomes, there is no summary of the accumulated evidence from these reviews. OBJECTIVE: This umbrella review summarizes the evidence on olive oil consumption or intervention in adults and its association with multiple risk factors and diseases. DATA SOURCES: We retrieved systematic reviews of randomized trials or observational studies on oral interventions or the consumption of olive oil. The systematic search encompassed databases including MEDLINE, Embase, Scopus, Web of Science, LILACS, and CENTRAL from inception to February 6, 2023. DATA EXTRACTION: Two independent reviewers conducted data extraction and assessed methodological quality using the Joanna Briggs Institute tool. DATA ANALYSIS: Overall, 17 systematic reviews of randomized trials and observational studies, covering outcomes such as cardiovascular diseases, cancer, type 2 diabetes, glucose metabolism, inflammatory and oxidative markers, and all-cause mortality, were included. The evidence suggests a beneficial association between olive oil consumption and cardiovascular diseases, cancer, type 2 diabetes, and all-cause mortality. However, the evidence was less definitive for inflammatory markers, oxidative stress, glucose metabolism, and blood lipid outcomes. Several meta-analyses revealed high heterogeneity and wide confidence intervals, along with a limited number of randomized clinical trials. CONCLUSION: Given the high heterogeneity and low quality of evidence, further studies involving randomized trials are imperative. Prioritizing an in-depth analysis of specific olive oil components and using a control group with distinct characteristics and different effects is strongly recommended. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42022357290.

5.
Foods ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998593

ABSTRACT

Virgin olive oil (VOO) is a globally esteemed product renowned for its chemical composition, nutritional value, and health benefits. Consumers seeking natural, nutritious, and healthy foods increasingly favor VOO. The optimization of the extraction system ensures the production of high-quality VOO with abundant antioxidant compounds that naturally protect it from degradation. Proper storage is crucial in maintaining the quality of VOO, prompting the exploration of novel extraction and preservation techniques. Factors such as light, temperature, and oxygen greatly influence the degradation process, resulting in reduced levels of natural antioxidants like polyphenols. Undesirable by-products and non-aromatic compounds may be formed, making the oil unacceptable over time. On the basis of all this consideration, this study aimed to evaluate the synergic use of two different gases (CO2 and argon) during the malaxation phase to limit radical development and delay lipid autoxidation. Additionally, unconventional preservation systems, namely argon headspace, shellac, and bottle in bag, were assessed over a period of 150 days. The results evidenced that the use of CO2 and argon during the malaxation process resulted in an improvement in the oil quality compared to the one obtained with the traditional system. However, in traditional oils, the alternative packaging systems determined interesting outcomes as they were able to positively affect different parameters, while the packaging effect was more mitigated in the test oils.

6.
Foods ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998599

ABSTRACT

Over the past years, a prolonged drought has affected Spain, raising significant concerns across various sectors, especially agriculture. This extended period of dry weather is profoundly affecting the growth and development of olive trees, potentially impacting the quality and quantity of olive oil produced. This study aims to assess the impact of agronomic factors, i.e., olive maturation and irrigation management, as well as the technological factors involved in the production process, on the antioxidant content of Picual virgin olive oil. Mathematical models were developed to maximize the concentration of polyphenols, orthodiphenols, chlorophylls, carotenes, and tocopherols in olive oils. Findings indicate that increasing the malaxation temperature from 20 to 60 °C and reducing the mixing time from 60 to 20 min positively influenced the polyphenol and orthodiphenol content. Although irrigation did not significantly affect the polyphenols, pigments, and α-tocopherol contents, it may enhance the ß- and γ-tocopherol content. Optimal conditions for producing antioxidant-enriched virgin olive oils involved olives from rainfed crops, with a moisture index of 3-4, and a 60-min malaxation process at 60 °C. Under these conditions, the total phenol content doubled, pigment content increased fourfold, and α-tocopherol content rose by 15%. These findings provide relevant knowledge to interpret the year-to-year variation in both organoleptic and analytical profiles of virgin olive oils.

7.
Foods ; 13(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998637

ABSTRACT

An increasing number of food companies are voluntarily adopting environmental policies and sustainability initiatives to tackle climate change. The aims of this study were to analyse the presence of environmental labels on table olive products, to explore consumer perceptions of these companies' environmental commitment and initiatives, and to evaluate the influence of these messages on purchasing decisions. For this purpose, a market study was conducted in different hypermarkets and supermarkets in Spain, and an online survey was submitted to consumers (n = 227). The results show that environmental claims and/or certifications related to sustainability do not appear on table olive products, despite most of the companies that produce and/or market table olives having adopted environmental and sustainability policies and commitments (34.3% have their environmental policy published on their website). More than 85% of consumers positively value these companies' sustainability commitments and consider environmental initiatives to be very important. As a sector of consumers pays close attention to environmental commitments, it would be interesting for table olive companies to identify their sustainability policies on their products' labelling to, thus, facilitate pro-environmental consumer purchase choices. These results could help the food industry develop the best strategies to publicise their social and environmental policies and commitments.

8.
Foods ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998651

ABSTRACT

Oleacein, a bioactive compound of olive oil and olive mill wastewater, has one of the strongest antioxidant activities among olive phenolics. However, few reports explore the in vivo antioxidant activity of oleacein, with no clear identification of the biological pathway involved. Earlier studies have demonstrated a link between stress resistance, such as oxidative stress, and longevity. This study presents the effects of oleacein on Caenorhabditis elegans mean lifespan and stress resistance. A significant lifespan extension was observed with an increase of 20% mean lifespan at 5 µg/mL with a hormetic-like dose-dependent effect. DAF-16 and SIR-2.1 were involved in the effects of oleacein on the longevity of C. elegans, while the DAF-2 receptor was not involved. This study also shows the capacity of oleacein to significantly enhance C. elegans resistance to oxidative and thermal stress and allows a better understanding of the positive effects of olive phenolics on health.

9.
Foods ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998654

ABSTRACT

The aim of this study was to assess the nutraceutical qualities of extra virgin olive oil (EVOO) samples obtained from three Sicilian olive cultivars: Nocellara, Biancolilla, and Cerasuola. We also evidenced the relationship among biophenols, base parameters and panel test scores, and evaluated the stability of the biophenols in EVOO. The assessment also took into consideration variations in olive harvesting periods and the influence of four different milling methods. A statistical analysis of the collected data revealed that the cultivar and harvesting period were the primary factors influencing the bio-phenol content, while the milling methods employed did not significantly affect the levels of biophenols in the oils. The panel test results were also illuminating as they were strongly related to the cultivar and polyphenol content. Following the criteria outlined in EC Regulation 432/2012, we selected three samples, each representing one of the cultivars, which exhibited the highest bio-phenol content to evaluate the biophenol stability during a time span of 16 months.

10.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998717

ABSTRACT

Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).

11.
Polymers (Basel) ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000730

ABSTRACT

Olive-like TiO2 (titanium dioxide), nanospheres compounds were synthesized. Polysaccharide (1-3 linked ß-D galactapyranose and 1.4-linked 3.6 anyhdro-α-L-galactopyranose and titanium isopropoxide (IV) was used as a precursor in its formation. The powder sample was evaluated by scanning tunneling microscope, X-ray diffraction pattern, power spectral density, fast Fourier transform, differential thermal analysis, continuous wavelet transform, and isotropy texture analysis. The results demonstrate that these nanospheres can successfully be synthesized in a solution using a polysaccharide network by means of the sol-gel method. The synthesized olive-like TiO2 nanospheres have diameters ranging from 50 nm to 500 nm. The synthesis parameters, such as temperature, time, and concentration of the polysaccharide, were controlled in solution.

12.
Food Chem ; 458: 140247, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38970955

ABSTRACT

Several food regulatory bodies regard olive oil as highly susceptible to food fraud, largely due to its substantial economic worth. Precise analytical tools are being developed to uncover these types of fraud. This study examines an innovative approach to extract strontium (Sr) from the olive oil matrix (via EDTA complexation and ion-exchange chromatography) and to determine its isotope composition by MC-ICP-MS. This technique was compared to a commonly used technique (i.e. acid extraction and extraction chromatography), and then validated. Three olive oils that are sold in France were prepared and analyzed by two methods: 1) acid extraction prior to Sr purification by Sr-spec resin and 2) complexation by EDTA prior to Sr purification by AG50W-X8. These methods were applied for the determination of the 87Sr/86Sr isotope ratio of 23 olive oils from various countries. We also demonstrated the feasibility of the method for the detection of olive oil mixtures.

13.
Heliyon ; 10(12): e32792, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975120

ABSTRACT

This study presents a sustainable approach to activated carbon production from olive stones in comparison to commercial ones, using various activating agents such as H3PO4, KOH, and ZnCl2, for enhancing the adsorption properties and versatile adsorption capability to remove a range of pollutants including copper ion, methylene blue, and 2,4-Dichlorophenoxyacetic acid from aqueous solutions. The performances of activated carbons across varying conditions such as pollutant concentrations, temperatures, pH levels, and adsorbent amounts were tested. Increased initial pollutant concentrations correlated with higher adsorption capacities. Maximum adsorption capacities were achieved at pH levels of 5, 10, and 2 for Cu, MB, and 2,4-D, respectively. For KOSAC, Cu removal rose from 27 % to 52 %, for ZOSAC, MB removal increased from 39 % to 65 %, and for ZOSAC, 2,4-D removal surged from 33 % to 99 % at varying adsorbent amounts. Model validation was carried out utilizing the kinetic models (PFO, PSO) and isotherm models (Langmuir, Redlich-Peterson). The PFO kinetic model and Langmuir isotherm model proved more suitability for Cu adsorption, whereas PFO and PSO kinetic models, along with Redlich-Peterson isotherm models, were more prominent for MB and 2,4-D adsorption. Thermodynamic analysis revealed that the adsorption of Cu and 2,4-D was exothermic, while MB adsorption was endothermic. By optimization of experimental conditions, the maximum adsorption capacities were attained at 30.34 °C and 297.65 mg L-1 for KOSAC-Cu, 48.62 °C and 269.37 mg L-1 for ZOSAC-MB, and 30.31 °C and 299.02 mg L-1 for ZOSAC-2,4-D sorption. This research highlights ZOSAC's potential as a cost-effective, eco-friendly solution for water treatment, contributing to environmental sustainability and economical feasibility.

14.
Front Microbiol ; 15: 1359670, 2024.
Article in English | MEDLINE | ID: mdl-38946909

ABSTRACT

The microbial population in the pig's gastrointestinal tract can be influenced by incorporating fibrous by-products into the diets. This study investigated the impact of including two types of dried olive cake (OC) in pigs' diets on fecal bacterial composition. The correlation between fecal microbiota and growth performance, nutrient digestibility, gut fermentation pattern and slurry gas emissions was also evaluated. Thirty male Pietrain x (Landrace x Large white) pigs (47.9 ± 4.21 kg) were assigned to three groups: a control group (C), a group fed a diet with 20% partially defatted OC (20PDOC), and a group fed a diet with 20% cyclone OC (20COC) for 21 days. Fecal samples collected before and after providing the experimental diets were analyzed for the V3-V4 region of the 16S rRNA gene. Pigs were weighed, and feed intake was recorded throughout the study. Potential ammonia and methane emissions from slurry were measured. No significant differences in alpha diversity indexes were found. The taxonomic analysis revealed that Firmicutes and Bacteroidota phyla were dominant at the phylum level across all groups. Differential abundance analysis using ALDEx showed significant differences among groups for various bacteria at the phylum, genus, and species levels at the end of the experiment. Pigs from 20PDOC and 20COC groups exhibited increased abundances of health-promoting bacteria, such as Plactomycetota at the phylum level and Allisonella and an unidentified genus from the Eggerthellaceae family at the genus level. These changes influenced short-chain fatty acids' (SCFA) concentration in slurries, leading to greater acetic, butyric, caproic and heptanoic acids in OC-fed groups, especially 20COC pigs. A volatility analysis revealed significant positive correlations (p < 0.05) between Uncultured_Bacteroidales and Unculured_Selenomonadaceae and energy digestibility. Monoglobus and Desulfovibrio showed a positive significant (p < 0.05) correlation with total SCFA, indicating a high impact on gut fermentation. However, growth performance parameters and potential gas emission displayed no significant correlations with a specific bacterial genus. In conclusion, our results suggest that OC inclusion into pig diets could positively modulate and contribute to the gut microbiota's favorable composition and functionality. Also, nutrient digestibility and gut fermentation patterns can be associated with specific microbial populations.

15.
Pharmacol Ther ; : 108689, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972454

ABSTRACT

Chemotherapy has allowed an increase in cancer survivorship, but it causes important adverse effects. Mucositis affecting the gastrointestinal tract is one of the main problems acutely caused by many antineoplastic drugs, such as 5-fluorouracil or methotrexate. Mucositis may cause pain, diarrhea, anorexia, weight loss, systemic infections and even death. This narrative review focuses on intestinal mucositis and the role that some nutraceuticals, namely vitamins (both lipid- and water-soluble) as well as fatty acids (FAs) and lipid-based products, can have in it. In preclinical (cell cultures, animal models) and/or human studies, vitamins A, D, E, B2, B9 and C, omega-3 long-chain FAs (eicosapentaenoic, docosahexaenoic, conjugated linoleic acid), short-chain FAs (mainly butyrate), medium-chain FAs (capric acid), and different lipid-based products (emu oil, extra-virgin olive oil, lipid replacement therapy), enriched in beneficial FAs and natural antioxidants, were shown to exert beneficial effects (both preventative and palliative) against chemotherapy-induced intestinal mucositis. Although the exact mechanisms of action involved in these effects are not yet well known, our review highlights the interest of investigating on diet and nutrition to implement scientifically robust strategies to improve protection of cancer patients against chemotherapy-induced adverse effects.

16.
Sci Rep ; 14(1): 16606, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025936

ABSTRACT

The agronomic use of compost and biochar as soil amendments may exhibit contrasting results in terms of soil fertility and plant nutrition. The effects of the biennial application of biochar, compost and a blend of compost:biochar (90:10; % dw:dw) on the agronomical performance of an organically managed and well established 25-year-old olive orchard was assessed 5 years after the initial application. The agronomical evaluation was based on the assessment of the soil physical, chemical, and biological characteristics, and the assessment of the soil fertility by both crop production and nutritional status of the orchard, and the bioassay with olive plantlets. Biochar mainly benefited the physical properties (bulk density, total porosity, aeration, water retention capacity) of soil, especially in the top 0-5 cm. Compost and its blend with biochar improved microbial activity, soil nutritional status (increasing the content of soluble organic C, N, and P) and favoured the formation of aggregates in soil. The bioassay conducted with young plantlets confirmed the enhanced soil fertility status in the three amended treatments, particularly in the case of biochar and its blend with compost. However, this effect was not significantly observed in the adult plants after 5 years of application, reflecting the slow response of adult olive trees to changes in fertilization. Based on these results, alongside the desirable long-residence time of biochar in soil and the ready availability of compost, the blend of biochar with compost assayed in this study is defined as a valid strategy for preparing high quality soil organic amendments.


Subject(s)
Charcoal , Composting , Olea , Soil , Olea/growth & development , Soil/chemistry , Composting/methods , Fertilizers/analysis , Organic Agriculture/methods
17.
Fish Shellfish Immunol ; 152: 109767, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009196

ABSTRACT

Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to global aquaculture, prompting ongoing efforts to identify potential drug candidates for disease prevention. Coumarin derivatives have recently emerged as a promising class of compounds effective against rhabdoviruses, which severely impact the aquaculture industry. In this study, we assessed the anti-VHSV activity of umbelliferone (7-hydroxycoumarin) in fathead minnow (FHM) cells and olive flounder Paralichthys olivaceus. Umbelliferone exhibited an EC50 of 100 µg/mL by reducing cytopathic effect, with a maximum cytotoxicity of 30.9 % at 750 µg/mL. Mechanistic analyses via a time-course plaque reduction assay revealed that direct incubation with the virus for 1 h resulted in 97.0 ± 1.8 % plaque reduction, showing excellent direct virucidal activity. Pretreatment for 4 h resulted in a 33.5 ± 7.8 % plaque reduction, which increased with longer incubation times. Cotreatment led to a 33.5 ± 2.9 % plaque reduction, suggesting interference with viral binding, whereas postinfection treatment proved less effective. Umbelliferone was prophylactically administered to the olive flounder through short-term (3 days) and long-term (14 days) medicated feeding, followed by a 4-day postinfection period. Short-term administration at 100 mg/kg body weight (bw)/day resulted in the highest relative percent survival (RPS) of 56 %, whereas long-term administration achieved a maximum RPS of 44 % at 30 mg/kg bw/day. Umbelliferone administration delayed mortality at these doses. Additionally, umbelliferone significantly inhibited the expression of the VHSV N gene during viral challenge, with no observed toxic effects in fish up to an administration dose of 30 mg/kg bw/day for 28 days. Our findings suggest that the protective mechanism of short-term administration of 100 mg umbelliferone against VHSV infection may involve the overexpression of TLR2, MDA5, STAT1, and NF-κB at 24 h postinfection (hpi). IL-8 and IFN II expression was upregulated, whereas TNF-α, IL-1ß, and IFN I expression was suppressed at 24 hpi. The upregulation of ISG15 at 48 hpi may contribute to the inhibition of VHSV replication, whereas the downregulation of Caspase 3 expression at 96 hpi suggests a possible inhibition of virus-induced apoptosis at later infection stages. Overall, umbelliferone exhibited anti-VHSV activity through multiple mechanisms, with the added advantage of convenient administration via medicated feed.

18.
Chem Biodivers ; : e202400717, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837886

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACEII), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against COVID-19, yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACEII, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method.  ACEII, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACEII, TMPRSS2, and Furin protein expression levels were significantly lower in dose dependent manner and the highest inhibition was seen at 100 ug/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease.  However, further studies need to be conducted in cells co-infected with the virus.

19.
Cureus ; 16(4): e59415, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38826610

ABSTRACT

BACKGROUND: Gingival inflammation, a hallmark of periodontal diseases, serves as a critical focus in oral health research. Characterized by redness, swelling, and bleeding of the gingival tissues, it reflects the body's response to bacterial biofilms accumulating on the tooth surfaces. This inflammatory process, initiated by the interaction between oral bacteria and the host immune system, can lead to a spectrum of periodontal conditions ranging from mild gingivitis to severe periodontitis. Understanding the efficacy of various methods to treat gingival inflammation is essential for refining treatment strategies and enhancing patient satisfaction in the realm of gingival inflammation. AIM: The objective of the study was to evaluate the efficacy of employing the microneedling technique with olive oil on gingival inflammation and plaque accumulation in individuals with gingivitis.  Materials and methods:Twenty-four individuals diagnosed with plaque-induced gingivitis were selected from Saveetha Dental College, Chennai. Participants were randomly assigned to one of two groups: Group A, comprising 12 individuals who received mechanical periodontal treatment only and Group B, consisting of 12 individuals treated with dermapen and topical olive oil. This involved the creation of microholes in the gingival tissue to enhance the concentration and penetration of the oils through the gingival tissues. Post-intervention assessments of gingival and plaque status were conducted using a gingival index and a plaque index at baseline, one, two, and four weeks. Statistical analysis was done using IBM SPSS Statistics for Windows, version 23 (IBM Corp., Armonk, NY, USA). Intergroup analysis was done using Mann-Whitney test and intra-group analysis was done using Kruskal-Wallis test for all the study parameters. Statistical significance was set at a p-value of less than 0.05. RESULTS: The mean plaque index scores were 2.02 ± 0.12 and 2.29 ± 0.21 in the subgingival scaling and microneedling with olive oil group respectively in baseline. The scores were 1.83 ± 0.29 and 0.57 ± 0.16 in the subgingival scaling and microneedling with olive oil group respectively at the end of four weeks. The results of plaque index scores were statistically significant between the control and the intervened groups at the end of four weeks with a p value of 0.01*. The mean gingival index scores were 2.09 ± 0.16 and 2.37 ± 0.17 in the subgingival scaling and microneedling with olive oil group in the baseline respectively. The scores were 1.88 ± 0.23 and 0.96 ± 0.21 in the subgingival scaling and microneedling with olive oil group respectively at the end of four weeks. The results of gingival index scores were statistically significant between the control and the intervened groups at the end of four weeks with a p value of 0.01*. CONCLUSION: Our research showcased a novel and effective technique, unveiling a significant enhancement in gingival health accompanied by a reduction in both the average gingival index and plaque index.

20.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893322

ABSTRACT

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Subject(s)
Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Olea , Phenols , Humans , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Olea/chemistry , Phenols/pharmacology , Phenols/chemistry , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Depression/drug therapy , Olive Oil/chemistry , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...