Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Sci China Life Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38900236

ABSTRACT

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

2.
J Biochem Mol Toxicol ; 38(6): e23735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773908

ABSTRACT

Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-ß-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.


Subject(s)
Isoflavones , Neoplasms , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/therapeutic use , Humans , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Glycosides/pharmacology , Glycosides/therapeutic use , Glycosides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
3.
Int Immunopharmacol ; 132: 111959, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554442

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is difficult to treat due to a lack of targeted therapies. In this study, we aimed to investigate whether a natural flavonoid compound called ononin could be effective in treating TNBC by triggering ferroptosis in MDA-MB-231 and 4 T1 cell lines, and MDA-MB-231-xenograft nude mice model. Ononin inhibited TNBC through ferroptosis, which was determined by MTT assay, flow cytometry, RT-PCR, immunofluorescence, transmission electron microscopy, histological analysis, western blot and bioluminescence assay. Our results showed that treatment with ononin led to increased levels of malondialdehyde and reactive oxygen species and decreased activity of superoxide dismutase, which are indicatives of ferroptosis. We also found that ononin downregulated two key markers of ferroptosis, SLC7A11 and Nrf2, at both the transcriptional and translational level. Additionally, the administration of ononin resulted in a notable decrease in tumor size and weight in the mouse model. Furthermore, it was observed to enhance the rate of apoptosis in TNBC cells. Importantly, ononin did not induce any histological changes in the kidney, liver, and heart. Taken together, our findings suggest that ononin could be a promising therapeutic strategy for TNBC, and that it works by disrupting the Nrf2/SLC7A11 axis through ferroptosis. These results are encouraging and may lead to the development of new treatments for this challenging cancer subtype.


Subject(s)
Ferroptosis , Mice, Nude , NF-E2-Related Factor 2 , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Ferroptosis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Humans , Female , Cell Line, Tumor , NF-E2-Related Factor 2/metabolism , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects
4.
Phytomedicine ; 125: 155290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308918

ABSTRACT

BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.


Subject(s)
Glucosides , Isoflavones , Lung Neoplasms , Radiation-Sensitizing Agents , Mice , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Vascular Endothelial Growth Factor A/metabolism , Mice, Nude , Cell Line, Tumor , Mice, Inbred C57BL , Vascular Endothelial Growth Factors/metabolism , Radiation Tolerance , Radiation-Sensitizing Agents/pharmacology , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit
5.
Biol Pharm Bull ; 46(8): 1041-1048, 2023.
Article in English | MEDLINE | ID: mdl-37532555

ABSTRACT

Thyroid cancer (TC) is the most common malignant tumor of endocrine system and head and neck. Ononin is an isoflavone component, which exhibited great antioxidant and anti-inflammatory activities. This study was conducted to explore the functions of ononin in the TC progression. The cell counting kit-8 (CCK8) assay was applied for the cell viability determination. The cell death and apoptosis rate were analyzed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining and flow cytometry. The quantitative real-time PCR (qRT-PCR) and Western blot assays were performed for the relative expressions determination. Lactate dehydrogenase (LDH) release assay was used to assess cytotoxicity. Ononin treatment prominently inhibited the cell viability and induced the cell apoptosis of the TC cells. Besides, caspase 3 (CASP3) was down-regulated and CD274 was up-regulated in TC. Ononin treatment prominently decreased the CD274 levels and increased the CASP3 levels in the TC cells. Additionally, ononin treatment dramatically enhanced the LDH release of the cytotoxicity of T cells. What is more, CASP3 overexpression or CD274 knockdown promoted the role of ononin in TC cells. Ononin treatment induced the cell death of the TC cells through regulating the CASP3 and CD274 expressions.


Subject(s)
Isoflavones , Thyroid Neoplasms , Humans , Caspase 3/metabolism , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Apoptosis , Cell Proliferation , Cell Line, Tumor , B7-H1 Antigen
6.
J Ethnopharmacol ; 312: 116432, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37003404

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese drugs, including Buyang Huanwu decoction (BYHWD), have been used in traditional practice to manage cardiovascular and cerebrovascular diseases. However, the effect and mechanisms by which this decoction alleviates diabetes-accelerated atherosclerosis are unknown and require exploration. AIM OF THE STUDY: This study aims to investigate the pharmacological effects of BYHWD on preventing diabetes-accelerated atherosclerosis, and elucidate its underlying mechanism. MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic ApoE-/- mice were treated with BYHWD. Atherosclerotic aortic lesions, endothelial function, mitochondrial morphology, and mitochondrial dynamics-related proteins were evaluated in isolated aortas. High glucose-exposed human umbilical endothelial cells (HUVECs) were treated with BYHWD and its components. AMPK siRNA transfection, Drp1 molecular docking, Drp1 enzyme activity measurement, and so on were used to explore and verify the mechanism. RESULT: BYHWD treatment inhibited the worsening of diabetes-accelerated atherosclerosis by lessening atherosclerotic lesions in diabetic ApoE-/- mice, by impeding endothelial dysfunction under diabetic conditions, and by inhibiting mitochondrial fragmentation by lowering protein expression levels of Drp1 and mitochondrial fission-1 protein (Fis1) in diabetic aortic endothelium. In high glucose-exposed HUVECs, BYHWD treatment also downgraded reactive oxygen species, promoted nitric oxide levels, and abated mitochondrial fission by reducing protein expression levels of Drp1 and fis1, but not mitofusin-1 and optic atrophy-1. Interestingly, we found that BYHWD's protective effect against mitochondrial fission is mediated by AMPK activation-dependent reduction of Drp1 levels. The main serum chemical components of BYHWD, ferulic acid, and calycosin-7-glucoside, can reduce the expression of Drp1 by regulating AMPK, and can inhibit the activity of GTPase of Drp1. CONCLUSION: The above findings support the conclusion that BYHWD suppresses diabetes-accelerated atherosclerosis by reducing mitochondrial fission through modulation of the AMPK/Drp1 pathway.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Drugs, Chinese Herbal , Mice , Humans , Animals , AMP-Activated Protein Kinases , Mitochondrial Dynamics , Endothelial Cells , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Diabetes Mellitus/drug therapy , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Glucose/pharmacology , Apolipoproteins E
7.
Molecules ; 28(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36838530

ABSTRACT

In this work, the origins for the spectral difference between two isoflavones, formononetin (F) and ononin (FG), are revealed via a comparison study of the fluorescence molecular structure. The fluorescence enhancement of FG in hot alkaline conditions is reported for the first time. For F, there is almost no fluorescence under acidic conditions, but when the pH is >4.8, its fluorescence begins to increase due to the deprotonation of 7-OH. Under a pH between 9.3 and 12.0, the anionic form of F produces a strong and stable fluorescence. The fluorescence quantum yield (Yf) of F is measured to be 0.042. FG shows only weak fluorescence in aqueous solutions under a wide range of pH until it is placed in hot alkaline solutions, which is attributed to the cleavage reaction of the γ-pyrone ring in FG. The Yf of FG is determined to be 0.020. Based on the fluorescence sensitization methods of F and FG, the quantitative analysis and detection of two substances can be realized. The limit of the detections for F and FG are 2.60 ng·mL-1 and 9.30 ng·mL-1, respectively. The linear detection ranges of F and FG are 11.7~1860 ng·mL-1 and 14.6~2920 ng·mL-1, respectively. Although the structural relationship between F and FG is glycoside and aglycone, under hot alkaline conditions, the final products after the cleavage and hydrolysis reactions are essentially different. The different fluorescence characteristics between F and FG pave a way for further identification and a quantitative analysis of the corresponding components in Chinese herbal medicine.


Subject(s)
Isoflavones , Glucosides
8.
Immun Inflamm Dis ; 11(2): e776, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36840499

ABSTRACT

BACKGROUND: Ononin, a flavonoid isolated from Astragalus membranaceus root, is the active ingredient of A. membranaceus and has potential anti-inflammatory properties, but its effect on colitis is unclear. AIMS: This study aimed to explore the anticolitis effect of Ononin by establishing a colitis model in mice induced by dextran sulfate sodium (DSS). METHODS: Male C57BL/6 mice were provided DSS, then treated with Ononin (10, 20, 40 mg/kg) or 5-ASA (40 mg/kg). The colitis symptoms were observed, the disease activity index (DAI) score were recorded daily, and colonic inflammation was evaluted by histopathological scoring. The expression of cytokines, inflammatory mediators, and mitophagy/NLRP3 inflammasome-related proteins were measured. RESULTS: Ononin significantly alleviated weight loss and colon shortening in mice with colitis (p < .01). Moreover, Ononin decreased the production of inflammatory cytokines and mediators associated with colitis (p < .05). In addition, Ononin inhibited macrophages infiltration and reduced caspase-1 activation in colitis mice. Caspase-1 activation is closely related to the NLRP3 inflammasome. Therefore, we investigated the effect of Ononin on NLRP3 inflammasome in vitro. The relevant results confirmed that Ononin inhibited NLRP3 inflammasome activation and inhibited mitochondrial damage (p < .05). Further studies revealed that Ononin inhibited mitochondrial damage through triggering mitophagy (p < .05). CONCLUSION: Ononin alleviates DSS-induced colitis by activating mitophagy to inhibit NLRP3 inflammasome.


Subject(s)
Colitis , Inflammasomes , Male , Animals , Mice , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , Colitis/chemically induced , Caspase 1/metabolism , Caspase 1/pharmacology , Cytokines/pharmacology
9.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36765716

ABSTRACT

Osteosarcoma is a common malignancy of the bone. Due to its high metastatic properties, osteosarcoma becomes the leading cause of cancer death worldwide. Ononin is an isoflavone glycoside known to have various pharmacological properties, including antioxidant and anti-inflammatory activities. In the present study, we aimed to investigate the efficacy of ononin on osteosarcoma cell migration, invasion, and the underlying mechanisms. The in vitro anti-tumorigenic and anti-migratory properties of ononin were determined by MTT, colony formation, invasion, and migration in MG-63 and U2OS osteosarcoma cell lines. The results were compared with the standard chemotherapeutic drug, doxorubicin (DOX), as a positive control. The dose-dependent manners of ononin treatment increased the expression of apoptosis and inhibition of cell proliferation through the EGFR-Erk1/2 signaling pathways. Additionally, ononin significantly inhibited the invasion and migration of human osteosarcoma cells. For consistency, we used the MG-63-xenograft mice model to confirm the in vivo anti-tumorigenic and anti-migratory efficacy of ononin by inhibiting the protein expressions of EGFR-Erk1/2 and MMP2/9. According to the histological study, ononin had no adverse effect on the liver and kidney. Overall, our findings suggested that ononin could be a potentially effective agent against the development and metastasis of osteosarcoma.

10.
Biomed Pharmacother ; 159: 114244, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638594

ABSTRACT

Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Insulin , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Obesity/metabolism
11.
Metabolites ; 12(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36355097

ABSTRACT

Candida albicans is a human pathogen that is part of the healthy microbiome. However, it is often associated with opportunistic fungal infections. The treatment of these infections is challenging because prolonged exposure to antifungal drugs can culminate in fungal resistance during therapy, and there is a limited number of available drugs. Therefore, this study investigated the antifungal activity of ononin by in silico and in vitro assays, and in Tenebrio molitor as an alternative in vivo model of infection caused by C. albicans. Ononin is an isoflavone glycoside derived from formononetin that has various biological activities. According in silico evaluation, ononin showed the best electron affinity in molecular docking with CaCYP51, with a binding free energy of -10.89 kcal/mol, superior to that of the antifungal drugs fluconazole and posaconazole. The ononin + CaCYP51 complex formed hydrogen bonds with Tyr132, Ser378, Phe380, and Met508, as well as hydrophobic connections with Tyr118, Leu121, Phe126, Leu131, Ile304, and Leu309, and interactions with the heme group. Ononin exerted anti-Candida albicans activity, with MIC between 3.9 and 7.8 µg/mL, and inhibited young and mature biofilms, with a reduction in cell density and metabolic activity of 50 to 80%. The compound was not cytotoxic to sheep red blood cells at concentrations up to 1000 µg/mL. Larvae of the mealworm T. molitor were used as an alternative in vivo model of C. albicans infection. Ononin was able to prolong larval survival at concentrations of 0.5, 1, and 5 mg/kg, and was not toxic up to a concentration of 20 mg/kg. Moreover, ononin reduced the fungal charge in treated animals. In conclusion, our results suggest that ononin has anti-Candida albicans activity and is a potential candidate for the development of new therapeutic alternatives.

12.
Front Oncol ; 12: 939646, 2022.
Article in English | MEDLINE | ID: mdl-35912256

ABSTRACT

Background: Laryngeal cancer is a type of head and neck tumor with a poor prognosis and survival rate. The new cases of laryngeal cancer increased rapidly with a higher mortality rate around the world. Objective: The current research work was focused to unveil the in vitro antitumor effects of ononin against the laryngeal cancer Hep-2 cells. Methodology: The cytotoxic effects of ononin against the laryngeal cancer Hep-2 cells and normal HuLa-PC laryngeal cells were studied using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The intracellular Reactive Oxygen Species (ROS) generation, apoptotic cell death, Mitochondrial Membrane Potential (MMP), and cell adhesion on the 25 and 50 µM ononin-treated Hep-2 cells were detected using respective staining assays. The levels of TBARS and antioxidants were assayed using specific kits. The expressions of c-Jun N-terminal kinase 1/2 (JNK1/2), Extracellular Signal-regulated Kinase 1/2 (ERK1/2), p38, Phosphatidylinositol-3 Kinase 1/2 (PI3K1/2), and protein kinase-B (Akt) in the ononin-treated Hep-2 cells were investigated using Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay. Results: The ononin treatment effectively inhibited the Hep-2 cell viability but did not affect the viability of HuLa-PC cells. Furthermore, the ononin treatment effectively improved the intracellular ROS accumulation, depleted the MMP, and triggered apoptosis in Hep-2 cells. The Thiobarbituric acid reactive substances (TBARS) were improved, and Glutathione (GSH) levels and Superoxide dismutase (SOD) were depleted in the ononin-administered Hep-2 cells. The ononin treatment substantially inhibited the JNK/ERK/p38 axis in the Hep-2 cells. Conclusion: Together, the outcomes of this exploration proved that the ononin has remarkable antitumor activity against laryngeal cancer Hep-2 cells.

13.
Toxicol Appl Pharmacol ; 452: 116179, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35914558

ABSTRACT

Doxorubicin (DOX) is a potent anthracycline antineoplastic drug. However, its dose-dependent cardiotoxicity limits its clinical application. Ononin is a natural isoflavone glycoside that is crucial in modulating apoptosis-related signaling pathways. In this study, we assessed the possible cardioprotective effects of ononin in DOX-induced cardiotoxicity and elucidated the underlying molecular mechanisms. In vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats, respectively. First, DOX was injected into the tail veins of Wistar rats to induce cardiomyopathy. Next, rats in the DOX + Ononin30 and DOX + Ononin60 groups were intragastrically administered ononin two weeks before DOX treatment. H9C2 cells were treated with vehicle or DOX with or without ononin. Next, 3-TYP was used to determine the relationship between endoplasmic reticulum (ER) stress and sirtuin 3 (SIRT3) expression. Ononin treatment ameliorated DOX-induced myocardial injury as determined by echocardiography. Furthermore, ononin partially restored DOX-induced cardiac dysfunction; the left ventricular ejection fraction (LVEF) and left ventricular systolic fractional shortening (LVFS) increased after pre-treatment with ononin. Further, ononin suppressed DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. The Bax/Bcl-2 ratio and 78-kD glucose-regulated protein (GRP78) and CCAAT enhancer-binding protein (CHOP) expression levels were higher in the DOX-treated group than in the control group but ononin treatment improved these parameters. These effects are associated with SIRT3 activity. Moreover, 3-TYP blocked the ononin-mediated protective effects. Hence, ononin positively affected DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, possibly mediated by stimulation of the SIRT3 pathway.


Subject(s)
Isoflavones , Sirtuin 3 , Animals , Apoptosis , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Endoplasmic Reticulum Stress , Glucosides , Isoflavones/pharmacology , Myocytes, Cardiac , Oxidative Stress , Rats , Rats, Wistar , Sirtuin 3/metabolism , Stroke Volume , Ventricular Function, Left
14.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534246

ABSTRACT

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Flavonoids , Plant Roots
15.
Biomed Pharmacother ; 149: 112908, 2022 May.
Article in English | MEDLINE | ID: mdl-35367764

ABSTRACT

Obesity is a global health burden for which we do not yet have effective treatments for prevention or therapy. Plants are an invaluable source of bioactive leads possessing anti-adipogenic potential. Ethnopharmacological use of Ononis spinosa L. roots (OSR) for treatment of obesity and metabolic disorders requires а scientific rationale. The current study examined the anti-adipogenic capacity of OSR and its secondary metabolites ononin (ONON) and maackiain (MACK) in human adipocytes as an in vitro model of obesity. Both ONON and MACK diminished lipid accumulation during adipocyte differentiation. Molecular docking analysis exposed the potential interactions between MACK or ONON and target regulatory adipogenic proteins. Furthermore, results from an RT-qPCR analysis disclosed significant upregulation of AMPK by MACK and ONON treatment. In addition, ONON increased SIRT1, PI3K and ACC mRNA expression, while MACK notably downregulated CEBPA, AKT, SREBP1, ACC and ADIPOQ. The protein level of PI3K, C/EBPα, PPARγ and adiponectin was reduced upon MACK treatment in a concentration-dependent manner. Similarly, ONON suppressed PI3K, PPARγ and adiponectin protein abundance. Finally, our study provides evidence that ONON exerts anti-adipogenic effect by upregulation of SIRT1 and inhibition of PI3K, PPARγ and adiponectin, while MACK induced strong inhibitory effect on adipogenesis via hampering PI3K, PPARγ/C/EBPα signaling and anti-lipogenic effect through downregulation of SREBP1 and ACC. Even though OSR does not hamper adipogenic differentiation, it could be exploited as a source of natural leads with anti-adipogenic potential. The multidirectional mechanism of action of MACK warrant further validation in the context of in vivo obesity models.


Subject(s)
Adipocytes , Adipogenesis , Anti-Obesity Agents , PPAR gamma , Adipocytes/drug effects , Adiponectin/metabolism , Anti-Obesity Agents/pharmacology , Glucosides/pharmacology , Humans , Isoflavones/pharmacology , Molecular Docking Simulation , Obesity/drug therapy , Obesity/metabolism , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pterocarpans/pharmacology , Sirtuin 1/metabolism
16.
Parasitol Int ; 88: 102535, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34995771

ABSTRACT

Dactylogyrus is a common parasitic pathogen, which causes high mortality of fish when presents in large numbers, resulting in serious economic losses. Herbal medicines contain myriad of bioactive compounds is a valuable reserve for developing safe and effective anti-parasite drugs. Here, we conducted bioassay-guided fractionation to isolate and identify the anti-parasitic constituents from Spatholobi caulis. Among five extraction solvents (petroleum ether, chloroform, ethyl acetate, methanol and water), S. caulis methanolic extract had the highest parasiticide activity in Carassius auratus, and therefore subjected to further separation and purification using multiple chromatography methods. One compound exhibiting the strongest parasiticidal activity was obtained and identified as ononin by analyzing its spectral data (NMR and ESI-MS). The EC50 value of ononin against Dactylogyrus was 0.655 mg/L and showed 100% parasiticide activity with 3.0 mg/L. The 24, 48, 72, 96 h LC50 for goldfish were 4.691 (the 95% CI of 4.526-4.873) mg/L, 4.612 (4.441-4.800) mg/L, 4.472 (4.345-4.607) mg/L, 4.288 (4.155-4.428) mg/L, respectively. The present results discovered for the first time that ononin had potent parasiticidal activity and have the potential to be developed as new anti-parasitic drug for the control of Dactylogyrus.


Subject(s)
Anthelmintics , Fish Diseases , Platyhelminths , Trematoda , Animals , Anthelmintics/chemistry , Fish Diseases/drug therapy , Fish Diseases/parasitology , Glucosides , Goldfish/parasitology , Isoflavones , Plant Extracts/chemistry
17.
BMC Complement Med Ther ; 22(1): 25, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086536

ABSTRACT

BACKGROUND: Osteoarthritis (OA) treatment aims to improve inflammation and delay cartilage degeneration. However, there is no effective strategy presently available. Ononin, a representative isoflavone glycoside component extracted from natural Chinese herbs, exerts anti-inflammatory and proliferative effects. However, the therapeutic effect of ononin on chondrocyte inflammation remains unclear. METHODS: In this study, we explored the therapeutic effect and potential mechanism of ononin in OA by establishing an interleukin-1 beta (IL-1ß)-induced chondrocyte inflammation model. RESULTS: Our results verified that ononin alleviated the IL-1ß-induced decrease in chondrocyte viability, attenuated the overexpression of the inflammatory factors tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), and simultaneously inhibited the expression of cartilage extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteinase-13 (MMP-13). Furthermore, the decomposition of Collagen II protein could be alleviated in the OA model by ononin. Finally, ononin improved chondrocyte inflammation by downregulating the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signalling pathways. CONCLUSION: Our findings suggested that ononin could inhibit the IL-1ß-induced proinflammatory response and ECM degradation in chondrocytes by interfering with the abnormal activation of the MAPK and NF-κB pathways, indicating its protective effect against OA.


Subject(s)
Cartilage/drug effects , Glucosides/pharmacology , Inflammation/metabolism , Interleukin-1beta/metabolism , Isoflavones/pharmacology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Osteoarthritis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cartilage/cytology , Cartilage/metabolism , Cartilage/pathology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Down-Regulation , Glucosides/therapeutic use , Inflammation/drug therapy , Isoflavones/therapeutic use , MAP Kinase Signaling System , Male , Matrix Metalloproteinase 13/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928172

ABSTRACT

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-β-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Subject(s)
Astragalus Plant , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Flavonoids , Plant Roots
19.
Front Microbiol ; 12: 786464, 2021.
Article in English | MEDLINE | ID: mdl-34970243

ABSTRACT

Natural flavonoids, formononetin and ononin, possess antioxidant, antibacterial, anti-inflammatory and neuroprotective effects. Many complications caused by SARS-CoV-2 make patients difficult to recover. Flavonoids, especially formononetin and ononin, have the potential to treat SARS-CoV-2 and improve myocardial injury. However, their poor water solubility, poor oral absorption, high toxicity, and high-cost purification limit industrial practical application. Succinylation modification provides a solution for the above problems. Formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside (FMP), a new compound, was succinyl glycosylated from formononetin by the organic solvent tolerant bacteria Bacillus amyloliquefaciens FJ18 in a 10.0% DMSO (v/v) system. The water solubility of the new compound was improved by over 106 times compared with formononetin, which perfectly promoted the application of formononetin and ononin. The conversion rate of formononetin (0.5 g/L) was almost 94.2% at 24 h, while the yield of formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside could achieve 97.2%. In the isoproterenol (ISO)-induced acute ischemia mice model, the myocardial injury was significantly improved with a high dose (40 mg/kg) of formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside. The lactate dehydrogenase level was decreased, and the catalase and superoxide dismutase levels were increased after formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside treatment. Thus, formononetin-7-O-ß-(6″-O-succinyl)-D-glucoside has high water solubility, low toxicity, and shows significant antimyocardial ischemia effects.

20.
Exp Ther Med ; 22(5): 1307, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34584565

ABSTRACT

Ononin (ON) is an isoflavone with numerous reported bioactivities, including anti-oxidative, anti-inflammatory and neuroprotective effects. Autophagy is a critical homeostatic process in the body that has been reported to closely associate with the apoptotic processes of cardiomyocytes. Using flow cytometry, western blotting, echocardiography and Masson's staining, the present study investigated the effects of ON on H2O2-induced cardiomyocyte apoptosis and myocardial infarction, in addition to any potential underlying molecular mechanisms. H2O2 treatment reliably induced apoptosis in H9C2 cells. The anti-apoptotic effects of ON were revealed by flow cytometry results and by the downregulation of cleaved-caspase 3. Further investigations indicated that ON may alleviate apoptosis by enhancing autophagy, as evidenced by increased microtubule-associated proteins 1A/1B light chain 3B expression and p62 degradation. Activation of the 5' AMP-activated protein kinase (AMPK)/mTOR pathway was observed after ON administration following H2O2-induced cardiomyocyte injury. However, these anti-apoptotic effects mediated by ON were lost after autophagy inhibition by chloroquine or AMPK inhibition by Compound C. Finally, the protective effects of ON on cardiomyocytes in vitro could also be observed in vivo. A myocardial infarction model was established by ligating the left anterior descending branch of the rat heart. Using echocardiography and Masson's staining, ON was shown to increase the ejection fraction and decrease cardiac fibrosis in rats with myocardial infarction. These results suggest that ON exerts cardioprotective effects by improving autophagy via the AMPK/mTOR signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...