Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Diabetes Metab Syndr Obes ; 17: 1923-1939, 2024.
Article in English | MEDLINE | ID: mdl-38711674

ABSTRACT

Aim: To evaluate the advantages and problems in the diagnosis and treatment of diabetic foot (DF) patients by analyzing the results of a 5-year follow-up of the organ system based (TOSF) treatment model. Methods: A retrospective study was conducted in 229 patients with diabetic foot. Chi-square test and rank-sum test were used to analyze the effects of patients' general condition, behavioral and nutritional status, degree of infection (inflammatory markers), comorbidity, diabetic foot grade/classification, and revascularization on readmission rate, amputation rate, all-cause mortality, incidence of other complications, and wound healing time. Logistic regression was used to analyze the risk factors affecting the prognosis of diabetic foot. Kaplan-Meier survival curve was used to analyze the differences in amputation rate and mortality rate at each time point. Results: This study showed that nutritional status, degree of infection, and revascularization influenced readmission rates. General condition, behavior and nutritional status, degree of infection, Wagner grade and revascularization affect the amputation rate. General conditions, behavioral and nutritional status, degree of infection, comorbidities, classification and revascularization affect the mortality of patients. Age and white blood cell(WBC) count affected the incidence of other complications. Influence of infection degree and Wagner grade and revascularization in patients with wound healing time. Revascularization was an independent protective factor for readmission, amputation, and mortality.Elevated serum inflammatory markers are an independent risk factor for amputation. Hypoproteinemia is an independent risk factor for mortality. Conclusion: In the "TOSF" diagnosis and treatment pattern, diabetic foot patients have a good prognosis. Special attention should be paid to the screening and revascularization of lower extremity vascular disease in patients with diabetic foot.

2.
Clin Proteomics ; 21(1): 33, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760690

ABSTRACT

BACKGROUND: COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS: A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS: Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS: The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.

6.
Acad Pathol ; 11(1): 100108, 2024.
Article in English | MEDLINE | ID: mdl-38433777
7.
Sci Rep ; 14(1): 5757, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459144

ABSTRACT

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Subject(s)
Acute Radiation Syndrome , Chromans , Medical Countermeasures , Radiation-Protective Agents , Vitamin E/analogs & derivatives , Animals , United States , Humans , Vitamin E/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Disease Models, Animal , Radiation-Protective Agents/pharmacology , Macaca mulatta
8.
Orphanet J Rare Dis ; 19(1): 118, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481246

ABSTRACT

BACKGROUND: Congenital generalized lipodystrophy (CGL) is a rare inherited disease characterized by a near-total absence of adipose tissue and is associated with organ system abnormalities and severe metabolic complications. Here, we have analyzed the disease characteristics of the largest CGL cohort from the Middle East and North Africa (MENA) who have not received lipodystrophy-specific treatment. METHODS: CGL was diagnosed clinically by treating physicians through physical assessment and supported by genetic analysis, fat loss patterns, family history, and the presence of parental consanguinity. Data were obtained at the time of patient diagnosis and during leptin-replacement naïve follow-up visits as permitted by available medical records. RESULTS: Data from 43 patients with CGL (37 females, 86%) were collected from centers located in eight countries. The mean (median, range) age at diagnosis was 5.1 (1.0, at birth-37) years. Genetic analysis of the overall cohort showed that CGL1 (n = 14, 33%) and CGL2 (n = 18, 42%) were the predominant CGL subtypes followed by CGL4 (n = 10, 23%); a genetic diagnosis was unavailable for one patient (2%). There was a high prevalence of parental consanguinity (93%) and family history (67%) of lipodystrophy, with 64% (n = 25/39) and 51% (n = 20/39) of patients presenting with acromegaloid features and acanthosis nigricans, respectively. Eighty-one percent (n = 35/43) of patients had at least one organ abnormality; the most frequently affected organs were the liver (70%, n = 30/43), the cardiovascular system (37%, n = 16/43) and the spleen (33%, n = 14/43). Thirteen out of 28 (46%) patients had HbA1c > 5.7% and 20/33 (61%) had triglyceride levels > 2.26 mmol/L (200 mg/dl). Generally, patients diagnosed in adolescence or later had a greater severity of metabolic disease versus those diagnosed during childhood; however, metabolic and organ system abnormalities were observed in a subset of patients diagnosed before or at 1 year of age. CONCLUSIONS: This analysis suggests that in addition to the early onset of fat loss, family history and high consanguinity enable the identification of young patients with CGL in the MENA region. In patients with CGL who have not received lipodystrophy-specific treatment, severe metabolic disease and organ abnormalities can develop by late childhood and worsen with age.


Subject(s)
Lipodystrophy, Congenital Generalized , Lipodystrophy , Female , Adolescent , Infant, Newborn , Humans , Child , Lipodystrophy, Congenital Generalized/epidemiology , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/complications , Lipodystrophy/epidemiology , Lipodystrophy/genetics , Adipose Tissue , Africa, Northern/epidemiology , Middle East/epidemiology
9.
EBioMedicine ; 99: 104901, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061242

ABSTRACT

Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Water Pollutants, Chemical , Animals , Humans , Microplastics , Cell Proliferation , Energy Metabolism , Inflammation
10.
Phenomics ; 3(5): 502-518, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881315

ABSTRACT

Human meridian (Jingluo) system was hypothesized by traditional Chinese medicine (TCM) for thousands of years, suggesting 12 normal meridian channels going through respective organs, carrying fluid and energy, and laying thermal effects. Some treatments based on meridians have been proved effective. However, existence of meridians has never been confirmed, let alone the lack of measurement for meridian phenotypes. Thermal effect is one of the major phenotypes of meridian metabolism. Infrared photograph was employed to display the picture of meridians since 1970. Unfortunately, no satisfactory results have been obtained. It is possible that only when a certain meridian is activated will there be thermal effect for successful infrared photograph. In this study, 13 types of tea were selected out of the herbs to activate the hypothesized 12 meridians for imagery taking. Forty-two volunteers took part in the experiment lasted for 13 days. Different tea was tested in different day. Infrared imageries of the human bodies were taken immediately after each tea was drunk. The highest temperatures of the fingers, palms, and above the organs were derived from the imageries and analyzed. The temperatures of the organs and fingers possibly connected by 12 hypothesized meridians rose together significantly following the meridian hypothesis. Infrared imageries showed quite clear shapes of the organs activated by different kinds of tea, e.g., heart and kidneys by yellow tea, etc. Some high temperature lines also matched the hypothetic meridians. Our work displayed the probable imageries of all the 12 hypothetic meridians for the first time, and proved with data that different foods may activate different organs following the meridian hypothesis, shedding light on a possible new method of targeted drug designs. Measurements of meridian phenotypes can be developed based on this method of activation. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00090-x.

11.
13.
Acad Pathol ; 10(3): 100086, 2023.
Article in English | MEDLINE | ID: mdl-37496887

ABSTRACT

Pathology is a core component of medical school curricula because understanding the pathogenesis of the disease is foundational both for diagnostic efficiency and optimal use of ancillary resources in patient care. The Pathology Competencies for Medical Education (PCME) were developed as a national resource of expectations of pathology knowledge for medical students. The PCME are composed of three competencies: disease mechanisms and processes, organ system pathology, and diagnostic pathology and therapeutic pathology. The learning goals and learning objectives of the PCME that were first published in 2017 have been carefully revised and updated. Significant additions were made to fill gaps of the original PCME objectives, and some learning objectives have been retired or moved to more appropriate locations within the competencies. As curricula and the practice of medicine change, the PCME will continue to be revised and updated periodically. They have and will continue to serve as the organizing principle for the growing number of educational cases published by Academic Pathology. Nomenclature in the original and revised PCME will allow for continued linking of previous and new educational cases to the revised learning objectives. PCME and the educational cases can be adapted into any type of curricula. Having a widely accepted resource of learning objectives in pathology will help students and medical educators focus on essential components of pathology for the future practice of medicine.

14.
J Hazard Mater ; 457: 131828, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37320902

ABSTRACT

The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.


Subject(s)
Electronic Nicotine Delivery Systems , Smoking Cessation , Animals , Humans , Prospective Studies
20.
Acad Pathol ; 10(1): 100065, 2023.
Article in English | MEDLINE | ID: mdl-36970328
SELECTION OF CITATIONS
SEARCH DETAIL
...