Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Braz. j. biol ; 83: 1-9, 2023. graf, ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468874

ABSTRACT

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-κB), fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.


Subject(s)
Male , Animals , Rats , Kidney Diseases/chemically induced , Kidney/drug effects , Thimerosal/adverse effects , Thimerosal/toxicity , Rats, Wistar
2.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469090

ABSTRACT

Abstract Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-B), tumor necrosis factor- (TNF-), Interleukin-1 (IL-1), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


Resumo O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-B), fator de necrose tumoral- (TNF-), interleucina-1 (IL-1), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.

3.
Rev. colomb. quím. (Bogotá) ; 51(1): 14-23, Jan.-Apr. 2022. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1408078

ABSTRACT

Resumen El modelamiento ¡n silíco ha sido de gran contribución en los procesos proteómicos, desarrollando estructuras de las secuencias proteicas ya existentes, que por motivos de altos costos y las diferentes tecnologías necesarias para el desarrollo de estas metodologías, se encuentran deficientes en el número de modelamientos de proteínas disponibles. Entre aquellas secuencias con carencia de estructura proteica se encuentra la proteína liasa organomercurial (MerB) de Pseudomonas /luorescens, importante en la resistencia al mercurio. En el presente artículo se analizó tanto estructural como funcionalmente la proteína MerB en Pseudomonas jluorescens, utilizando la herramienta de la química estructural "modelamiento por homología" mediante plataformas bioinformáticas, con el fin de obtener un modelo que represente la estructura 3D más precisa y que capturen las mejores variantes estructurales entre todas las posibles conformaciones de las proteínas en la familia. En este trabajo, se desarrolló un método comparativo de la secuencia estudiada con las reportadas en las bases de datos para las proteínas MerB del género Pseudomonas. Se propone un modelo tridimensional para la enzima (MerB) en P. jluorescens, mediante el modelamiento por homología, se muestra la caracterización en la estructura secundaria, terciaria, la caracterización del dominio catalítico y los motivos estructurales presentes.


Abstract In silico modeling has made a great contribution to proteomic processes, developing structures of the already existing protein sequences, which for reasons of high costs and the different technologies necessary for the development of these methodologies, are deficient in the number of models of available proteins. Among those sequences lacking protein structure is the organomercurial lyase (MerB) protein from Pseudomonas fluoresceins, important in mercury resistance. In this article, the MerB protein in Pseudomonas fluorescens was analyzed both structurally and functionally, using the structural chemistry tool "homology modeling" using bioinformatic platforms, in order to obtain a model that represents the most accurate 3D structure and that captures the best structural variants among all the possible conformations of the proteins in the family. In this work, a comparative method of the sequence studied with those reported in the databases for MerB proteins of the genus Pseudomonas was developed. A three-dimensional model for the enzyme (MerB) in P. fluorescens is proposed, through homology modeling, the characterization at the secondary and tertiary structure level, the characterization of the catalytic domain and the structural motifs present is shown.


Resumo A modelagem in silico tem dado um grande contributo para os processos proteómicos, desenvolvendo estruturas de sequências de proteínas já existentes, as quais, pelos elevados custos e pelas diferentes tecnologias necessárias ao desenvolvimento destas metodologias, são deficientes no número de modelos de proteínas disponíveis. Entre as sequências sem estrutura protéica está a proteína organomercurial liase (MerB) de Pseudomonas fluorescens, importante na resistência ao mercúrio. Neste artigo, a proteína MerB em Pseudomonas fluorescens foi analisada estrutural e funcionalmente, usando a ferramenta de química estrutural "modelagem de homologia" usando plataformas de bioinformática, a fim de obter um modelo que represente a estrutura 3D mais precisa e que capture as melhores variantes estruturais. entre todas as conformações possíveis das proteínas da família. Neste trabalho, foi desenvolvido um método comparativo da sequência estudada com aqueles relatados em bancos de dados para proteínas MerB do gênero Pseudomonas. Um modelo tridimensional para a enzima (MerB) em P. fluorescens é proposto, através de modelagem por homologia, a caracterização em nível de estrutura secundária e terciária, a caracterização do domínio catalítico e os motivos estruturais presentes são mostradas.

4.
ACS Appl Mater Interfaces ; 11(8): 8400-8411, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30724070

ABSTRACT

The development of novel methods to detect mercury is of paramount importance owing to the impact of this metal on human health and the environment. We observed that flavin mononucleotide (FMN) and its helical assembly with a single-walled carbon nanotube (SWNT) selectively bind Hg2+ arising from HgCl2 and MeHgCl. Absorption spectroscopic studies show that FMN preferentially forms a 2:1 rather than a 1:1 complex with Hg2+ at high FMN concentrations. On the basis of the analogy to the thymine-Hg-thymine complex, it is proposed that the 2:1 complex between FMN and Hg2+ comprises a Hg-bridged pair of FMN groups, regardless of the presence of SWNT. Upon addition of as little as a few hundred nanomoles of Hg2+, both FMN and FMN-SWNT exhibit absorption and photoluminescence (PL) changes. Moreover, FMN-SWNT displays simultaneous multiple sigmoidal changes in PL of SWNT tubes having different chiral vectors. Assessment of binding affinities using the Hill equation suggests that 2:1 and 1:1 complexes form between Hg2+ and FMN groups on the FMN-SWNT. Theoretical calculations indicate that optical changes of the FMN-SWNT originate from Hg-mediated conformational changes occurring on the helical array of FMN on the SWNT. High-resolution transmission electron microscopy revealed that the presence of Hg2+ in complexes with the FMN-SWNT enables visualization of helical periodic undulation of FMN groups along SWNT without the need for staining. Circular dichroism (CD) study revealed that FMN-SWNT whose CD signal mainly originates from FMN decreases dichroic bands upon the addition of Hg2+ owing to the formation of a centrosymmetric FMN-Hg-FMN triad on SWNT. The binding mode specificity and multimodal changes observed in response to Hg2+ ions suggest that systems based on FMN-SWNT can serve as in vivo NIR beacons for the detection of various mercury derivatives.


Subject(s)
Flavin Mononucleotide/chemistry , Mercury/chemistry , Nanotubes, Carbon/chemistry , Circular Dichroism , Density Functional Theory , Mercuric Chloride/chemistry , Methylmercury Compounds/chemistry , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , Thymine/chemistry
5.
Sci Adv ; 3(5): e1700041, 2017 May.
Article in English | MEDLINE | ID: mdl-28580426

ABSTRACT

Methylmercury (CH3Hg+) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH3Hg+ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as Methylosinus trichosporium OB3b, can take up and degrade CH3Hg+ rapidly, whereas others, such as Methylococcus capsulatus Bath, can take up but not degrade CH3Hg+. Demethylation by M. trichosporium OB3b increases with increasing CH3Hg+ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as M. trichosporium OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH3Hg+ by methanobactin followed by cleavage of the C-Hg bond in CH3Hg+ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH3Hg+ in the environment.


Subject(s)
Methylmercury Compounds/metabolism , Methylococcus capsulatus/metabolism , Methylosinus/metabolism , Imidazoles/metabolism , Methanol/metabolism , Oligopeptides/metabolism
6.
PeerJ ; 3: e1127, 2015.
Article in English | MEDLINE | ID: mdl-26246970

ABSTRACT

Bacterial populations present in Hg-rich environments have evolved biological mechanisms to detoxify methylmercury and other organometallic mercury compounds. The most common resistance mechanism relies on the H(+)-assisted cleavage of the Hg-C bond of methylmercury by the organomercurial lyase MerB. Although the initial reaction steps which lead to the loss of methane from methylmercury have already been studied experimentally and computationally, the reaction steps leading to the removal of Hg(2+) from MerB and regeneration of the active site for a new round of catalysis have not yet been elucidated. In this paper, we have studied the final steps of the reaction catalyzed by MerB through quantum chemical computations at the combined MP2/CBS//B3PW91/6-31G(d) level of theory. While conceptually simple, these reaction steps occur in a complex potential energy surface where several distinct pathways are accessible and may operate concurrently. The only pathway which clearly emerges as forbidden in our analysis is the one arising from the sequential addition of two thiolates to the metal atom, due to the accumulation of negative charges in the active site. The addition of two thiols, in contrast, leads to two feasible mechanistic possibilities. The most straightforward pathway proceeds through proton transfer from the attacking thiol to Cys159 , leading to its removal from the mercury coordination sphere, followed by a slower attack of a second thiol, which removes Cys96. The other pathway involves Asp99 in an accessory role similar to the one observed earlier for the initial stages of the reaction and affords a lower activation enthalpy, around 14 kcal mol(-1), determined solely by the cysteine removal step rather than by the thiol ligation step. Addition of one thiolate to the intermediates arising from either thiol attack occurs without a barrier and produces an intermediate bound to one active site cysteine and from which Hg(SCH3)2 may be removed only after protonation by solvent-provided H3O(+). Thiolate addition to the active site (prior to any attack by thiols) leads to pathways where the removal of the first cysteine becomes the rate-determining step, irrespective of whether Cys159 or Cys96 leaves first. Comparisons with the recently computed mechanism of the related enzyme MerA further underline the important role of Asp99 in the energetics of the MerB reaction. Kinetic simulation of the mechanism derived from our computations strongly suggests that in vivo the thiolate-only pathway is operative, and the Asp-assisted pathway (as well as the conversion of intermediates of the thiolate pathway into intermediates of the Cys-assisted pathway) is prevented by steric factors absent from our model and related to the precise geometry of the organomercurial binding-pocket.

7.
Methods ; 65(2): 190-200, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23978514

ABSTRACT

A central feature of the protein tyrosine phosphatase (PTP) catalytic mechanism is an attack of the substrate's phosphate moiety by a thiolate ion in the signature CX5R motif. In addition to being an effective nucleophile in this form, the thiolate ion is also susceptible to reversible redox regulation. This attribute permits temporal inhibition of PTP activities, which affects numerous cellular processes utilizing kinase-mediated signal propagation. Accumulating evidence has revealed diverse mechanisms adopted by PTPs to avoid irreversible thiol oxidation of the active site Cys residue, often involving structurally proximal thiols within the active site region. Therefore, there has been a significant effort made to develop thiol labeling strategies coupled to mass spectrometry to identify and characterize redox sensitive thiols within PTPs as a necessary step in understanding how a particular PTP is regulated by redox signaling. A common drawback to many current methods is the use of neutral pH labeling techniques, requiring special attention with regards to non-specific thiol oxidation during sample preparation. This study describes the use of rapid, low pH thiol labeling methods to overcome this issue. Mercury immobilized metal affinity chromatography (Hg-IMAC) demonstrated high selectivity and specificity while enriching for thiol-containing peptides from the atypical dual specificity phosphatase hYVH1 (also known as DUSP12). This approach revealed several reversibly oxidized thiols within the catalytic domain of hYVH1. Subsequently, use of another low pH labeling reagent, 4,4-dithiopyridine (4-DTP) helped identify novel disulfide linkages providing evidence that hYVH1 utilizes a disulfide exchange mechanism to prevent irreversible oxidation of the catalytic Cys residue in the active site.


Subject(s)
Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfhydryl Compounds , Affinity Labels , Escherichia coli/enzymology , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction , Substrate Specificity , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...