Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 114(1): 14, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324190

ABSTRACT

Excessive cadmium in rice grain in agricultural production is an important issue to be addressed in some southern regions of China. In this study, we constructed transgenic rice overexpressing OsVIT1 and OsVIT2 driven by 35S promoter in the cultivar ZH11. Compared with ZH11, OsVIT1 expression in leaves was significantly increased by 3-6.6 times and OsVIT2 expression in leaves was significantly increased by 2-2.5 times. Hydroponic experiments showed that overexpression of OsVIT1 and OsVIT2 increased the tolerance to Fe deficiency, significantly reduced Cd content in shoot and xylem sap, and had no effect on Cd tolerance in rice. Two years of field trials showed that the Fe content in the grain of OsVIT1 and OsVIT2 overexpressed materials was significantly reduced by 20-40% and the straw Fe content was significantly increased by 10-45%, and the grain Fe content distribution ratio was significantly decreased and the straw Fe distribution ratio was significantly increased compared with the wild type. The OsVIT1 and OsVIT2 overexpressed materials significantly reduced the Cd content of grain by 40-80% and the Cd content of straws by 37-77%, and the bioconcentration factor of Cd was significantly reduced in both grains and straw of OsVIT1 and OsVIT2 overexpressed materials. Overexpression of OsVIT1 and OsVIT2 did not affect the concentration of other metal ions in rice straw and grain. qRT-PCR analysis showed that the expression of the low affinity cation transporter OsLCT1 was significantly downregulated in the OsVIT1 and OsVIT2 overexpressed materials. In conclusion, overexpression of OsVIT1 and OsVIT2 reduced Cd accumulation in straw and grains, providing a strategy for Cd reduction in rice.


Subject(s)
Cadmium , Oryza , Plant Leaves , Agriculture , China , Edible Grain , Membrane Transport Proteins
2.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 713-723, 2023 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-36847100

ABSTRACT

Iron (Fe) deficiency and excess cadmium (Cd) in rice grain are important problems to be solved in agricultural production. Previous studies have shown that OsVIT1 and OsVIT2 are vacuolar iron transporters. In this study, wild-type ZH11 was selected as the background material and OsVIT1 and OsVIT2 were overexpressed in endosperm by using endosperm specific promoter Glb-1. Field experiments were conducted to study the effect of OsVIT1 and OsVIT2 overexpression on Fe and Cd accumulation in different parts of rice. The results showed that OsVIT1 overexpression in endosperm significantly reduced Fe content in grain by about 50%, while significantly increased zinc (Zn) and copper (Cu) contents in straw and Cu content in grain. OsVIT2 overexpression in endosperm significantly decreased Fe and Cd contents in grain by about 50%, and significantly increased Fe content in straw by 45%-120%. Overexpression of OsVIT1 and OsVIT2 in endosperm did not affect the agronomic traits of rice. In conclusion, OsVIT1 and OsVIT2 overexpression in endosperm reduced Fe accumulation in rice grain, which did not achieve the expected effect. OsVIT2 overexpression in endosperm also decreased Cd accumulation in grain and increased Fe accumulation in straw, which provided reference for iron biofortification and cadmium reduction in rice.


Subject(s)
Oryza , Soil Pollutants , Cadmium , Endosperm/genetics , Endosperm/chemistry , Oryza/genetics , Iron , Zinc , Edible Grain
3.
Chinese Journal of Biotechnology ; (12): 713-723, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970402

ABSTRACT

Iron (Fe) deficiency and excess cadmium (Cd) in rice grain are important problems to be solved in agricultural production. Previous studies have shown that OsVIT1 and OsVIT2 are vacuolar iron transporters. In this study, wild-type ZH11 was selected as the background material and OsVIT1 and OsVIT2 were overexpressed in endosperm by using endosperm specific promoter Glb-1. Field experiments were conducted to study the effect of OsVIT1 and OsVIT2 overexpression on Fe and Cd accumulation in different parts of rice. The results showed that OsVIT1 overexpression in endosperm significantly reduced Fe content in grain by about 50%, while significantly increased zinc (Zn) and copper (Cu) contents in straw and Cu content in grain. OsVIT2 overexpression in endosperm significantly decreased Fe and Cd contents in grain by about 50%, and significantly increased Fe content in straw by 45%-120%. Overexpression of OsVIT1 and OsVIT2 in endosperm did not affect the agronomic traits of rice. In conclusion, OsVIT1 and OsVIT2 overexpression in endosperm reduced Fe accumulation in rice grain, which did not achieve the expected effect. OsVIT2 overexpression in endosperm also decreased Cd accumulation in grain and increased Fe accumulation in straw, which provided reference for iron biofortification and cadmium reduction in rice.


Subject(s)
Cadmium , Endosperm/chemistry , Oryza/genetics , Iron , Zinc , Edible Grain , Soil Pollutants
4.
Front Plant Sci ; 13: 868661, 2022.
Article in English | MEDLINE | ID: mdl-35812939

ABSTRACT

Nearly 2 billion people who reside in developing countries are suffering from nutrient deficiency, also known as hidden hunger. A hidden hunger includes iron (Fe) and zinc (Zn) deficiency. One of the most efficient solutions to hidden hunger is the biofortification of crops through breeding. In this study, we characterized the mutant 1095_k, which has high grain Fe (~1.4-fold) and Zn (~1.2-fold) concentration compared with wild-type plants for a 5-year field trial. The yield components of 1095_k are similar to wild-type plants in a paddy field. In addition, 1095_k has a non-sense mutation in OsVIT2, a vacuolar localized Fe transporter. F2 crosses between 1095_k and wild type having the mutation showing higher grain Fe and Zn concentration. In contrast, plants without the mutation showed similar element concentrations as the wild type. These results suggest that OsVIT2 would be responsible for high Fe and Zn of grain and the 1095_k would be a useful breeding material for the biofortification of Fe and Zn.

5.
Front Plant Sci ; 11: 601527, 2020.
Article in English | MEDLINE | ID: mdl-33329668

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2020.01102.].

6.
Front Plant Sci ; 11: 1102, 2020.
Article in English | MEDLINE | ID: mdl-32849682

ABSTRACT

Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...