Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Doc Ophthalmol ; 149(1): 11-21, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871951

ABSTRACT

PURPOSE: The aim of this exploratory study is to investigate the role of S-cones in oscillatory potentials (OPs) generation by individuals with blue-cone monochromacy (BCM), retaining S-cones, and achromatopsia (ACHM), lacking cone functions. METHODS: This retrospective study analyzed data from 39 ACHM patients, 20 BCM patients, and 26 controls. Central foveal thickness was obtained using spectral-domain optical coherence tomography, while amplitude and implicit time (IT) of a- and b-waves were extracted from the ISCEV Standard dark-adapted 3 cd.s.m-2 full-field ERG (ffERG). Time-frequency analysis of the same measurement enabled the extraction of OPs, providing insights into the dynamic characteristics of the recorded signal. RESULTS: Both ACHM and BCM groups showed a significant reduction (p < .00001) of a- and b-wave amplitudes and ITs as well as the power of the OPs compared to the control groups. The comparison between ACHM and BCM didn't show any statistically significant differences in the electrophysiological parameters. The analysis of covariance revealed significantly reduced central foveal thickness in the BCM group compared to ACHM and controls (p < .00001), and in ACHM compared to controls (p < .00001), after age correction and Tukey post-hoc analysis. CONCLUSIONS: S-cones do not significantly influence OPs, and the decline in OPs' power is not solely due to a reduced a-wave. This suggests a complex non-linear network influenced by photoreceptor inputs. Morphological changes don't correlate directly with functional alterations, prompting further exploration of OPs' function and physiological role.


Subject(s)
Color Vision Defects , Electroretinography , Retinal Cone Photoreceptor Cells , Tomography, Optical Coherence , Humans , Color Vision Defects/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Retrospective Studies , Male , Female , Middle Aged , Adult , Visual Acuity/physiology , Young Adult , Aged , Dark Adaptation/physiology , Adolescent
2.
Doc Ophthalmol ; 148(3): 133-143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38451375

ABSTRACT

PURPOSE: Leber hereditary optic neuropathy (LHON) affects retinal ganglion cells causing severe vision loss. Pattern electroretinogram and photopic negative response (PhNR) of the light-adapted (LA) full-field electroretinogram (ERG) are typically affected in LHON. In the present study, we evaluated dark-adapted (DA) and LA oscillatory potentials (OPs) of the flash ERG in genetically characterized LHON patients to dissociate slow from fast components of the response. METHODS: Seven adult patients (mean age = 28.4 ± 5.6) in whom genetic diagnosis confirmed LHON with mtDNA or nuclear DNAJC30 (arLHON) pathogenic variants were compared to 12 healthy volunteers (mean age = 35.0 ± 12.1). Full-field ERGs were recorded from both eyes. Offline digital filters at 50, 75 and 100 Hz low cutoff frequencies were applied to isolate high-frequency components from the original ERG signals. RESULTS: ERG a-waves and b-waves were comparable between LHON patients and controls, while PhNR was significantly reduced (p = 0.009) in LHON patients compared to controls, as expected. OPs derived from DA signals (75 Hz low cutoff frequency) showed reduced peak amplitude for OP2 (p = 0.019). LA OP differences between LHON and controls became significant (OP2: p = 0.047, OP3: p = 0.039 and OP4: p = 0.013) when the 100 Hz low-cutoff frequency filter was applied. CONCLUSIONS: Reduced OPs in LHON patients may represent disturbed neuronal interactions in the inner retina with preserved photoreceptoral (a-wave) to bipolar cell (b-wave) activation. Reduced DA OP2 and high-cutoff LA OP alterations may be further explored as functional measures to characterize LHON status and progression.


Subject(s)
Dark Adaptation , Electroretinography , Optic Atrophy, Hereditary, Leber , Photic Stimulation , Retinal Ganglion Cells , Humans , Electroretinography/methods , Optic Atrophy, Hereditary, Leber/physiopathology , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Male , Adult , Female , Retinal Ganglion Cells/physiology , Young Adult , Dark Adaptation/physiology , Middle Aged , Visual Acuity/physiology
3.
J Neurosci ; 43(49): 8367-8384, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37775301

ABSTRACT

The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.


Subject(s)
Amacrine Cells , NFI Transcription Factors , Retina , Animals , Female , Male , Mice , Amacrine Cells/metabolism , Electroretinography , NFI Transcription Factors/metabolism , Retina/metabolism , Retinal Bipolar Cells , Transcription Factors/metabolism
4.
Bioengineering (Basel) ; 10(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37370656

ABSTRACT

BACKGROUND: The electroretinogram (ERG) is an essential diagnostic tool for visual function, both in clinical and research settings. Here, we establish an advanced in vitro approach to assess cell-type-specific ERG signal components. METHODS: Retinal explant cultures, maintained under entirely controlled conditions, were derived from wild-type mice and rd10 rod- and cpfl1 cone-degeneration mouse models. Local micro-ERG (µERG) and simultaneous ganglion cell (GC) recordings were obtained from the retinal explants using multi-electrode arrays. Band-pass filtering was employed to distinguish photoreceptor, bipolar cell, amacrine cell (AC), and GC responses. RESULTS: Scotopic and photopic stimulation discriminated between rod and cone responses in wild-type and mutant retina. The 25 kHz sampling rate allowed the visualization of oscillatory potentials (OPs) in extraordinary detail, revealing temporal correlations between OPs and GC responses. Pharmacological isolation of different retinal circuits found that OPs are generated by inner retinal AC electrical synapses. Importantly, this AC activity helped synchronise GC activity. CONCLUSION: Our µERG protocol simultaneously records the light-dependent activities of the first-, second-, and third-order neurons within the native neuronal circuitry, providing unprecedented insights into retinal physiology and pathophysiology. This method now also enables complete in vitro retinal function testing of therapeutic interventions, providing critical guidance for later in vivo investigations.

5.
Biochem Biophys Res Commun ; 655: 118-126, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36934587

ABSTRACT

Electroretinogram (ERG) is the most common clinical and basic visual electrodiagnostic test, which has long been used to evaluate the retinal function through photic stimulation. Despite its wide application, there are still some pitfalls often neglected in ERG recording, such as the recording time point, active electrode location, and the animal strain. In this study, we systematically analyzed and compared the effects of multiple factors on ERG, which would provide an important reference for ERG detection by other investigators. ERG was recorded using the Celeris D430 rodent ERG testing system. The amplitudes and latencies of a wave, b wave and oscillatory potentials (OPs) recorded from different electrode locations (subdermal and invasive), different times of day (day time 8:00 to 13:00 and night time 18:00 to 23:00), bilateral eyes (left and right), and different mouse strains (C57 and CD1) were analyzed and compared. Our results revealed that ERG was affected by active electrode locations and difference between day and night, while OPs seemed not to be influenced. There was no significant difference in the amplitudes or latencies of ERG and OPs between left and right eyes, irrespective of measurements at day or night, or which method was used. Compared to C57 mice, both ERG and OP responses were significantly decreased in Brn3bAP/AP mice, a model for retinal ganglion cell (RGC) loss. In addition, there were some non-negligible differences in visual responses between C57 and CD1 mouse strains. Our results suggest that the invasive procedure is a reliable method for evaluating the visual function including VEP, ERG and OP responses in mice. Moreover, these comparative analyses provide valuable references for future studies of mammalian visual electrophysiology.


Subject(s)
Electroretinography , Retina , Mice , Animals , Electroretinography/methods , Retinal Ganglion Cells/physiology , Mammals
6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834538

ABSTRACT

To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 µL of PBS was injected into the left eye, while the right eye was injected with 1 µL of PBS containing different agents: APB, GABA, Bicuculline, TPMPA, Glutamate, DNQX, Glycine, Strychnine, or HEPES. The OP response depends on the type of photoreceptors involved, showing their maximum response amplitude in the ERG induced by mixed rod/cone stimulation. The oscillatory components of the OPs were affected by the injected agents, with some drugs inducing the complete abolition of oscillations (APB, GABA, Glutamate, or DNQX), whereas other drugs merely reduced the oscillatory amplitudes (Bicuculline, Glycine, Strychnine, or HEPES) or did not even affect the oscillations (TPMPA). Assuming that rod bipolar cells (RBC) express metabotropic Glutamate receptors, GABAA, GABAC, and Glycine receptors and that they release glutamate mainly on Glycinergic AII amacrine cells and GABAergic A17 amacrine cells, which are differently affected by the mentioned drugs, we propose that RBC-AII/A17 reciprocal synapses are responsible for the OP generation in the ERG recordings in the mice. We conclude that the reciprocal synapses between RBC and AII/A17 are the basis of the ERG OP oscillations of the light response, and this fact must be taken into consideration in any ERG test that shows a decrease in the OPs' amplitude.


Subject(s)
Retinal Diseases , Strychnine , Mice , Animals , Strychnine/pharmacology , Bicuculline , HEPES , Mice, Inbred C57BL , Retina , Glycine , gamma-Aminobutyric Acid , Glutamates
7.
J Clin Med ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233838

ABSTRACT

PURPOSE: This study aimed to summarize the electroretinographic oscillatory potential (OP) responses in healthy young children recorded by RETeval. METHODS: By using the RETeval system, we recorded the implicit times and amplitudes of the OPs (OP1-5), in 132 healthy children aged from 0 to 11 years old. The age, gender, and data of implicit time and amplitude of each child were recorded and analyzed. Correlation analysis was performed between age and implicit time/amplitude. RESULTS: No correlation was shown between the implicit times and amplitudes with gender. The implicit times and amplitudes of OP1-5 matured over 10 years of age, with exponential time constants of 1.9, 2.2, 1.8, 1.7, and 1.6 years and 2.1, 2.9, 2.8, 3.0, and 3.2 years, respectively. The majority of the trend occurred within the first 4.6 years. CONCLUSIONS: In order to diagnose and evaluate vision-related disorders, the OP response is commonly used. The percentiles and age dependence of OP responses calculated and shown in this study could be regarded as reference data in age-matched pediatric patients.

8.
Doc Ophthalmol ; 144(3): 191-202, 2022 06.
Article in English | MEDLINE | ID: mdl-34559355

ABSTRACT

PURPOSE: Human oscillatory potentials (OPs) are derived from dark-adapted (DA) electroretinograms (ERGs) with fixed frequency cutoff filters while light-adapted (LA) OPs are generally not isolated from ERGs. Our purpose was to analyze the effect of cutoff frequencies on DA and LA ERG components using a series of fixed and variable filters. METHODS: DA and LA ERGs were recorded from 10 healthy eyes of 10 subjects (mean age = 20.5 ± 6.7 years) following ISCEV standards. Each signal was filtered in the Fourier domain to acquire slow (a- and b-waves; below cutoff frequency) and fast (OPs; above cutoff frequency) components. Fixed cutoff frequencies ranged from 60 to 105 Hz and a variable cutoff frequency was calculated. Results were analyzed with statistical tests and specific models. RESULTS: DA ERG components were slightly influenced by the filter cutoff frequency. In contrast, fixed and variable filters significantly changed LA components: the lower the cutoff frequency the smaller the b-wave and OP3 and the higher the OP2/OP4 amplitudes. Analyzing the filter frequency limits a transition range between 68.9 Hz and 83.9 Hz was observed where amplitudes vary. CONCLUSIONS: The present report shows that DA OPs may be isolated from ERGs using filtering procedures with high-pass cutoff frequency at about 75 Hz as recommended by ISCEV. On the other hand, the spectral distribution of low-frequency and high-frequency LA ERG components may overlap. Accordingly, filtering the signal using different cutoff frequencies is not necessarily separating b-wave and OPs.


Subject(s)
Electroretinography , Eye , Adolescent , Adult , Dark Adaptation , Electroretinography/methods , Humans , Oscillometry , Photic Stimulation/methods , Young Adult
9.
Schizophr Res ; 239: 134-141, 2022 01.
Article in English | MEDLINE | ID: mdl-34891077

ABSTRACT

BACKGROUND: Retinal dysfunction is widely documented in schizophrenia using flash (fERG) and pattern electroretinograms (PERG), but the role of dopamine transmission has seldom been explored. METHODS: We explored the role of dopamine transmission by evaluating the spatial location of retinal anomalies using multifocal ERG (mfERG) in photopic condition and the oscillatory potentials (OPs) extracted from fERG measured in scotopic condition in 29 patients with schizophrenia and 29 healthy controls. RESULTS: With the mfERG, our main results revealed reduced amplitudes in the center of the retina: P1 (p < .005) and N2 amplitudes (p < .01) in the <2° region, N1 (p < .0005) and P1 amplitudes (p < .001) in the 2-5° region and P1 amplitude (p < .05) in the 5-10° region. For OPs, our results showed a decrease in the O1 (p < .005), O2 (p < .005), O3 (p < .05) and overall O1, O2, O3 index amplitudes (p < .005) in patients with schizophrenia. CONCLUSIONS: Both the central location of retinal dysfunctions of the mfERG and OPs results could reflect a hypodopaminergic effect in patients with schizophrenia. In future studies, OPs should be considered as a measure to evaluate the hypodopaminergy in patients.


Subject(s)
Amacrine Cells , Schizophrenia , Electroretinography/methods , Humans , Retina , Schizophrenia/complications , Schizophrenia/drug therapy
10.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884517

ABSTRACT

Achromatopsia (ACHM) is an inherited autosomal recessive disease lacking cone photoreceptors functions. In this study, we characterize the time-frequency representation of the full-field electroretinogram (ffERG) component oscillatory potentials (OPs), to investigate the connections between photoreceptors and the inner retinal network using ACHM as a model. Time-frequency characterization of OPs was extracted from 52 controls and 41 achromat individuals. The stimulation via ffERG was delivered under dark-adaptation (DA, 3.0 and 10.0 cd·s·m-2) to assess mixed rod-cone responses. The ffERG signal was subsequently analyzed using a continuous complex Morlet transform. Time-frequency maps of both DA conditions show the characterization of OPs, disclosing in both groups two distinct time-frequency windows (~70-100 Hz and >100 Hz) within 50 ms. Our main result indicates a significant cluster (p < 0.05) in both conditions of reduced relative power (dB) in ACHM people compared to controls, mainly at the time-frequency window >100 Hz. These results suggest that the strongly reduced but not absent activity of OPs above 100 Hz is mostly driven by cones and only in small part by rods. Thus, the lack of cone modulation of OPs gives important insights into interactions between photoreceptors and the inner retinal network and can be used as a biomarker for monitoring cone connection to the inner retina.


Subject(s)
Action Potentials , Color Vision Defects/pathology , Electroretinography/methods , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/pathology , Adult , Case-Control Studies , Female , Humans , Male , Photic Stimulation
11.
J Clin Med ; 10(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575150

ABSTRACT

To analyze the early microvascular retinal changes and oscillatory potentials alterations secondary to diabetic retinal damage, 44 eyes of 22 diabetic patients without and with mild diabetic retinopathy (DR) and 18 eyes of 9 healthy controls were examined. All subjects underwent spectral domain optical coherence tomography (SD-OCT), OCT angiography (OCTA), and electroretinography of oscillatory potentials (OPs). At OCTA, vessel area density (VAD), vessel length fraction (VLF), and fractal dimension (FD) were significantly reduced in the superficial vascular plexus (SVP), VLF and FD in the intermediate capillary plexus (ICP), and FD in the deep capillary plexus (DCP) in the diabetic group compared to the control group. The amplitude (A) of OP2, OP3, OP4 and the sum of OPs were significantly reduced in the diabetic group versus the controls, and the last two parameters were reduced also in patients without DR versus the controls. Moreover, in the diabetic group, a significant direct correlation was found between the A of OP1, OP2, OP3 and sOP and the VLF and FD in the SVP, while a statistically significant inverse correlation was found between the A of OP3 and OP4 and the VDI in the ICP and DCP. The reduced oscillatory potentials suggest a precocious involvement of amacrine cells in diabetic eyes, independently of DR presence, and their correlation with vascular parameters underlines the relevance of the crosstalk between these cells and vascular components in the pathophysiology of this chronic disease.

12.
Doc Ophthalmol ; 143(1): 75-83, 2021 08.
Article in English | MEDLINE | ID: mdl-33548032

ABSTRACT

PURPOSE: Galloway-Mowat syndrome (GAMOS) is a clinically heterogenous and rare condition classically described as the combination of nephrotic syndrome associated with brain anomaly and delays in development. It was first reported in the literature in 1968 by Galloway W.H and Mowat A.P. Reports of visual anomaly in these patients are generally limited to decreased visual acuity, nystagmus and optic nerve atrophy. To this day, little is known about retinal function in this disease. Therefore, the purpose of this case report is to reveal abnormal retinal function (including light-adapted and dark-adapted retinal function) in a female patient diagnosed with GAMOS due to mutation of the WDR73 gene. METHODS: Complete dilated pediatric ophthalmic examination and ISCEV full field standard light (10 min of light adaptation; background light: 30 cd.m-2; flash intensity: 3.0 cd.sec.m-2) and dark-adapted (20 min of dark adaptation; flash intensities: 0.01, 3.0 and 10.0 cd.sec.m-2) electroretinograms were performed on a 2-year-old female patient diagnosed with GAMOS due to a biallelic mutation in the WDR73 gene. RESULTS: Ophthalmologic evaluation under anesthesia revealed normal appearing anterior segments. Significant bilateral optic nerve pallor was noted. Fundus examination appeared to be abnormal and demonstrated mid-peripheral whitish glistening appearance with possible gliosis. Retinoscopy revealed bilateral high myopia with a refractive error of -8.00 sphere in both eyes. ISCEV standard ERG revealed residual responses under light-adapted condition. Undetectable responses were obtained after 20 min of dark adaptation when using a dim flash (DA 0.01). However, when brighter flashes were used in a dark-adapted condition (DA 3.0 and DA 10.0), the ERGs were detectable, albeit abnormal in amplitudes and of electronegative morphology. CONCLUSIONS: The results obtained showed significant retinal functional deficit affecting both the cone and the rod photoreceptor pathways, along with the inner retina, in a patient diagnosed with GAMOS due to biallelic mutations in the WDR73 gene. Our report is limited to one patient, and additional studies are needed to verify whether retinal functional anomalies, as measured by the full field electroretinogram, present a novel biomarker in all patients affected with GAMOS or only in patients with a mutation in the WDR73 gene. Given the evidence of retinal functional changes presented in this study, it is strongly suggested to include complete ophthalmic examination, retinal imaging, including OCT, and full field ERG testing in patients affected with GAMOS.


Subject(s)
Microcephaly , Nephrosis , Child, Preschool , Dark Adaptation , Electroretinography , Female , Hernia, Hiatal , Humans , Photic Stimulation
13.
Am J Ophthalmol Case Rep ; 20: 100873, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32944671

ABSTRACT

PURPOSE: We present 3 cases of Alström syndrome (ALMS) that highlight the importance of the ophthalmic exam, as well as the diagnostic challenges and management considerations of this ultra-rare disease. OBSERVATIONS: The first case is of a 2-year-old boy with history of spasmus nutans who presented with head bobbing and nystagmus. The second patient is a 5-year-old boy with history of infantile dilated cardiomyopathy status post heart transplant, Burkitt lymphoma status post chemotherapy, obesity, global developmental delay, and high hyperopia previously thought to have cortical visual impairment secondary to heart surgery/possible ischemic event. This patient presented with nystagmus, photophobia, and reduced vision. The third case involves a 8-year-old boy with history of obesity, bilateral optic nerve atrophy, hyperopic astigmatism, exotropia, and nystagmus. Upon presentation to the consulting pediatric ophthalmologist, none of the patients had yet been diagnosed with ALMS. All 3 cases were subsequently found to have an electroretinogram (ERG) that exhibited severe global depression and to carry ALMS1 pathogenic variants. CONCLUSIONS AND IMPORTANCE: ALMS is an autosomal recessive disease caused by ALMS1 variations, characterized by cone-rod dystrophy, obesity, progressive sensorineural hearing loss, cardiomyopathy, insulin resistance, and multiorgan dysfunction. Retinal dystrophy diagnosis is critical given clinical criteria and detection rates of genetic testing. Early diagnosis is extremely important because progression to flat ERG leads to the inability to differentiate between rod-cone or cone-rod involvement, either of which have their own differential diagnoses. In our series, the ophthalmic exam and abnormal ERG prompted further genetic testing and the subsequent diagnosis of ALMS. Multidisciplinary care ensures the best possible outcome with the ophthalmologist playing a key role.

14.
Doc Ophthalmol ; 141(3): 293-305, 2020 12.
Article in English | MEDLINE | ID: mdl-32542469

ABSTRACT

PURPOSE: The electroretinogram (ERG) has proven to be useful in the evaluation and monitoring of patients with posterior uveitis. ERG oscillatory potentials (OPs) are sometimes reduced in many uveitic eyes with otherwise grossly normal ERG responses. This study compares ERG parameters, including OPs, between patients with birdshot chorioretinopathy, other posterior uveitis, and controls. METHODS: This was a retrospective case-control study. Sixty-four patients seen at a clinical practice had a total of 93 visits during which ERG was performed on both eyes. ERG data from 93 age-matched controls were also collected. Root-mean-squared (RMS) energy of the OPs was calculated using Fourier analysis for 88 patients and 88 age-matched controls for whom complete data were available. Photopic flicker amplitudes, photopic flicker latencies, scotopic b-wave amplitudes, and OP RMS values were compared between patients and controls. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves. RESULTS: The mean ages of patients and controls were 55.9 ± 10.8 (SD) years and 55.1 ± 11.5, respectively. 83% of the patients had a diagnosis of BCR. The mean OP RMS value was significantly different in patients (15.6 µV ± 9.7 µV) versus control eyes (33.0 µV ± 12.7 µV), p < 0.001. Area under the ROC curves (AUROC) was 0.75 for photopic flicker amplitudes, 0.77 for photopic flicker latencies, 0.72 for scotopic b-wave amplitudes, and 0.88 for OP RMS. AUROC was significantly different between OP RMS and photopic flicker amplitudes (p < 0.001), between OP RMS and flicker latencies (p = 0.0032), and between OP RMS and scotopic b-wave amplitudes (p < 0.0001). CONCLUSION: Analysis of OPs shows greater sensitivity and specificity in the diagnosis and evaluation of patients with birdshot chorioretinopathy than photopic and scotopic ERG amplitudes and photopic flicker latencies.


Subject(s)
Birdshot Chorioretinopathy/physiopathology , Electroretinography , Retina/physiopathology , Adolescent , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Oscillometry , Photic Stimulation , ROC Curve , Retrospective Studies , Uveitis, Posterior/physiopathology , Visual Acuity/physiology
15.
Exp Eye Res ; 194: 108023, 2020 05.
Article in English | MEDLINE | ID: mdl-32222454

ABSTRACT

How the absence of gravity affects the physiology of human beings is generating global research interest as space exploration, including missions aboard the International Space Station, continues to push boundaries. Here, we examined changes in retinal microcirculation and visual electrophysiology in mice suspended by their tails to simulate the cephalad movement of blood that occurs under microgravity conditions. Tail suspension was performed with a head-down tilt with a recommended angle of 30°. Mice in the control groups were similarly attached to a tether but could maintain a normal position. Morphologically, the 15-day tail-suspended mice showed retinal microvascular dilation, tortuosity, and a relatively long fluorescence retention; however, the average diameter of the major retinal vessels was not notably changed. In addition, optical coherence tomography showed their optic nerve head had an increased diameter. However, the mice could adapt to the change, with microcirculation and the optic nerve head recovering following 30-day tail suspension. Expression of rhodopsin and cone-opsins was not notably changed, and no retinal apoptotic-positive cells were detected between 15- and 30-day tail suspensions. Moreover, the three experimental groups of suspended mice showed normal retinal layers and thickness. Functionally, following 15-day tail suspension, scotopic electroretinograms showed a decline in the oscillatory potentials (OPs), but not in the b wave; simultaneously, the peak time of flash visual evoked potential component N1 was delayed compared to its baseline and the time-matched control. Following 30-day tail suspension, the OPs (O2) amplitude recovered to approximately 97% of its baseline or 86% of the time-matched control level. By simulating cephalad shifting of blood, short-term tail suspension can affect rodent retinal microcirculation, the optic nerve head, and disturb visual electrophysiology. However, the change is reversible with no permanent injury observed in the retina. The mice could adapt to the short-term change of retinal microcirculation, indicating new conditions that could be combined with, or could enhance, simulated microgravity for further studying the impact of short- or long-term outer space conditions on the retina.


Subject(s)
Electroretinography/methods , Evoked Potentials, Visual/physiology , Microcirculation/physiology , Retinal Vessels/physiology , Weightlessness , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Optic Disk/blood supply , Optic Disk/cytology , Retinal Ganglion Cells/cytology , Tomography, Optical Coherence/methods
16.
Doc Ophthalmol ; 141(2): 99-109, 2020 10.
Article in English | MEDLINE | ID: mdl-32060756

ABSTRACT

PURPOSE: To investigate the center-periphery distribution of ON and OFF retinal responses in complete congenital stationary night blindness (cCSNB). METHODS: Photopic full-field flash ERGs (photopic ffERGs) and OPs (photopic ffOPs) and slow m-sequence (to enhance OP prominence) mfERGs (and filtered mfOPs) evoked by a 37 hexagon stimulus array were recorded from normal subjects and cCSNB patients. Discrete wavelet transform (DWT) analysis of photopic ffERGs and mfERGs was also performed in order to assess the contribution of the ON and OFF retinal pathways (i.e., OFF-to-ON ratio) in both cohorts. RESULTS: As expected, the photopic ffERG (and ffOPs) responses in cCSNB were devoid of the first two of the three OPs (i.e., OP2 and OP3 and OP4) normally seen on the ascending limb of the b-wave. A similar finding was also noted in the mfERGs (and mfOPs) of ring 4. In contrast, the mfERGs (and mfOPs) of ring 1 included all three OPs. DWT analysis revealed that while in normal subjects, the OFF-to-ON ratio of mfERGs slightly increased from rings 1 to 4 (from 0.61 ± 0.03 to 0.78 ± 0.04; p < 0.05; median: from 0.62 to 0.79; p < 0.05), in cCSNB this ratio increased significantly more [from 0.73 ± 0.13 (ring 1) to 1.18 ± 0.17 (ring 4); p < 0.05; median: 0.78 to 1.22; p < 0.05], hence from a normal ON-dominated ratio (central ring) to an OFF-dominated ratio (peripheral ring). CONCLUSIONS: Our results show a clear discrepancy of ON and OFF mfOP components in cCSNB. Responses originating from the most central ring (i.e., ring 1) disclosed a near-normal electrophysiological contribution (as revealed with the presence of OP2, OP3 and OP4 as well as with the DWT OFF-to-ON ratio) of the retinal ON and OFF pathways in mfERG (and mfOPs) responses compared to responses from the more peripheral ring (and ffOP) which are devoid of the ON OPs (i.e., OP2 and OP3).


Subject(s)
Eye Diseases, Hereditary/physiopathology , Fovea Centralis/physiopathology , Genetic Diseases, X-Linked/physiopathology , Myopia/physiopathology , Night Blindness/physiopathology , Retinal Ganglion Cells/physiology , Visual Pathways/physiopathology , Adult , Electroretinography/methods , Female , Humans , Male , Middle Aged , Oscillometry , Photic Stimulation , Young Adult
17.
Doc Ophthalmol ; 140(1): 31-42, 2020 02.
Article in English | MEDLINE | ID: mdl-31512016

ABSTRACT

PURPOSE: To define the relationship between abnormalities in the activation phase of cone phototransduction and the oscillatory potentials (OPs) of the light-adapted electroretinogram in diabetics who have mild or no retinopathy. METHODS: Subjects included 20 non-diabetic controls and 40 type-2 diabetics (20 had no clinically apparent diabetic retinopathy [NDR] and 20 had mild nonproliferative DR). Single flash responses for a series of stimulus retinal illuminances were measured under light-adapted conditions using conventional techniques. The a-waves of the responses were fit with a delayed Gaussian model to derive Rmp3 (maximum amplitude of the massed photoreceptor response) and S (phototransduction sensitivity). OPs were extracted from the responses by conventional band-pass filtering. RESULTS: Analysis of variance (ANVOA) indicated that both diabetic groups had significant OP amplitude and S reductions compared to the controls, whereas Rmp3 did not differ significantly among the groups. Although log OP amplitude and log Rmp3 were significantly correlated for the control subjects for each flash retinal illuminance (all r > 0.49, p < 0.03), log OP amplitude and log Rmp3 were not correlated for either diabetic group for any flash retinal illuminance (all r ≤ 0.36, p ≥ 0.13). Log OP amplitude and log S were generally not correlated significantly for the control or diabetic groups. CONCLUSION: OP amplitude losses do not appear to be related to reduced cone sensitivity in early-stage diabetic retinopathy. This suggests that diabetes may separately affect cone function, as evidenced by cone phototransduction sensitivity losses, and inner-retina function, as evidenced by OP amplitude losses.


Subject(s)
Diabetic Retinopathy/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular/physiology , Adaptation, Ocular/physiology , Adult , Diabetes Mellitus, Type 2/physiopathology , Electroretinography/methods , Female , Humans , Male , Oscillometry , Photic Stimulation/methods
18.
Doc Ophthalmol ; 140(2): 189-199, 2020 04.
Article in English | MEDLINE | ID: mdl-31659575

ABSTRACT

PURPOSE: To study whether rod- and cone-driven electroretinogram (ERG) responses are altered in myopia patients. METHODS: Dark- and light-adapted ERGs were recorded from 57 myopic eyes of 32 patients aged 22-30 and 19 emmetropic eyes of 10 age-matched normal subjects. The myopic eyes were divided into 3 groups according to spherical equivalent (SE) of manifest refraction: 18 low myopia eyes (≤ - 3.00 diopter (D), 23 moderate myopia eyes (- 3.25 to - 6.00 D), and 16 high myopia eyes (> - 6.25 D). The amplitudes of the dark- and light-adapted ERG a- and b-waves, as well as the frequency spectra of the cone-driven and rod-driven oscillatory potentials (OPs), were analyzed by fast Fourier transform. The peak frequency, implicit time, and total power of the OPs were determined. The axial length was measured with an IOL Master. The ERG parameters including those of the cone- and rod-driven OPs were compared among three groups. RESULTS: The amplitudes of the a-wave and b-wave of the dark-adapted ERGs were increased with refractive power (P < 0.05). Interestingly, the average peak frequency of the rod-driven OPs showed a significant positive correlation with refractive power (P < 0.001): 123.41 ± 9.13 Hz in emmetropic controls, 129.12 ± 10.28 Hz in low myopia, 133.90 ± 9.13 Hz in moderate myopia, and 139.51 ± 5.78 Hz in high myopia. However, the parameters of the light-adapted ERGs and the cone-driven OPs in myopic eyes were within normal ranges. CONCLUSION: We found significant positive correlation between the peak frequency of rod-driven OPs, as well as the amplitudes of rod-driven ERG a- and b-waves, and the refractive power. The results suggest that the rod system function was changing during the progress of myopia, while the cone system function appeared unaffected. The peak frequency of OPs appeared as a novel ERG parameter for myopia, a common ocular condition.


Subject(s)
Dark Adaptation/physiology , Myopia/physiopathology , Retinal Rod Photoreceptor Cells/physiology , Adult , Cohort Studies , Electroretinography/methods , Female , Fourier Analysis , Humans , Male , Oscillometry , Photic Stimulation/methods , Reference Values , Young Adult
19.
Doc Ophthalmol ; 138(3): 247-254, 2019 06.
Article in English | MEDLINE | ID: mdl-30847633

ABSTRACT

PURPOSE: In order to study the OPs, the ERG signal must be filtered to eliminate the low-frequency waves known as the a- and b-waves. Unfortunately, the ISCEV ERG standard does not give clear guidelines on how to proceed apart from indicating that frequencies below 75 Hz should be filtered out when recording scotopic OPs, while no suggestions are offered for the photopic OPs. The purpose of this study was thus to characterize more extensively the effects of various digital filters on the photopic OP waveforms in order to suggest the most appropriate filtering method to record them. METHODS: Filtered OPs (N = 9600 tracings) were extracted from a photopic ERG databank of 40 normal subjects [intensity: 4.4 cd s m-2; background: 30 cd m-2] using 240 different combinations of five digital filters types (Bessel; Butterworth; Elliptic; Chebyshev type 1 and 2), eight bandwidth ranges (50-300; 75-300; 100-300; 125-300; 50-1000; 75-1000; 100-1000; 125-1000 Hz), three filter orders (1, 2 and 5) and with/without phase lag corrections that were generated using MATLAB 2015b. The peak time and the percentage of OPs (sum of OP amplitudes on the b-wave amplitude) were calculated in the time domain (TD%OP). RESULTS: The timing of the OPs was less affected than the amplitude by the different filters used. Depending on the filter used, the resulting OPs were either severely depressed (16.16% of broadband OP content) or slightly reduced (93.63%). The filters that most successfully eliminated the slow components of the ERG (i.e., < 12% of broadband value) were the Bessel, the Butterworth and the Chebyshev type 1 filters and out of the latter, the Butterworth filter was that which most faithfully reproduced the high-frequency OPs (i.e., > 96%). CONCLUSION: Our results vividly demonstrate the need to better define the characteristics of the filter that is used to record the OPs as it does have a significant impact on the resulting waveform.


Subject(s)
Color Vision/physiology , Electroretinography/methods , Retina/physiology , Adult , Female , Filtration/methods , Humans , Male , Oscillometry , Photic Stimulation , Retrospective Studies
20.
Methods Mol Biol ; 1753: 27-40, 2018.
Article in English | MEDLINE | ID: mdl-29564779

ABSTRACT

Electroretinography is a crucial assay for studying the function and the functional integrity of the retina. The mouse is an important animal model for studying the retinal neurons and circuitries. In addition, it is often used as animal model for human retinal disorders. Therefore, a good understanding of the procedures in animal handling, of the methods for data analysis and of the requirements for stimulators and for the data acquisition equipment is of importance. Here, the currently most common methods and materials for in vivo electroretinography in the mouse are discussed.


Subject(s)
Disease Models, Animal , Electroretinography/methods , Photic Stimulation/methods , Retina/physiopathology , Retinal Diseases/diagnostic imaging , Animals , Data Analysis , Electroretinography/instrumentation , Humans , Mice , Photic Stimulation/instrumentation , Retinal Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...