Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.960
Filter
1.
J Orthop Res ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017392

ABSTRACT

Despite the success of standard antiseptic irrigation solutions in reducing periprosthetic joint infection (PJI) rates, there is still a need for more effective solutions. Synergistic use of povidone-iodine (PI) and hydrogen peroxide (H2O2) has shown promising results; however, the optimal solution concentration balancing bactericidal activity and osseointegration remains unknown. This study aims to evaluate the impact of these antiseptic irrigation solutions on osseointegration and the bone-implant interface strength in vivo. Forty C57BL/6 mice underwent bilateral tibial implantation surgery and were randomly allocated into three groups receiving 0.3% PI, 10% PI mixed with 3% H2O2, or saline as irrigation solutions intraoperatively. Assessments were performed on postoperative Days 1 and 28, including plain radiographs, microcomputed tomography (microCT) evaluation, histological analysis, immunohistochemistry, and biomechanical pull-out testing. No wound complications were observed. MicroCT scans revealed no differences in peri-implant trabecular bone parameters. Biomechanical pull-out testing showed no differences in the bone-implant interface strength across groups. Histological analysis indicated no differences in bone and bone marrow percentage areas among treatment groups. Immunohistochemical analysis demonstrated no differences among groups in peri-implant osteocalcin, osterix, or endomucin-positive cells. In conclusion, using either antiseptic irrigation solution showed no differences in osseointegration parameters compared to the control group, demonstrating safety and the absence of toxicity. CLINICAL RELEVANCE: Dilute 0.3% povidone-iodine and a 1:1 combination of 10% povidone-iodine mixed with 3% hydrogen peroxide can be safely used during primary and revision total joint arthroplasty without compromising osseointegration or causing wound complications.

2.
Biomed Rep ; 21(2): 122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38978538

ABSTRACT

Osseointegration implant (OI) surgery is the latest rehabilitation technology for amputees, where a bone-anchored implant obviates the limitations of traditional socket prostheses. The bone mineral density (BMD) in the periprosthetic and other anatomical regions can be used to assess bone remodelling following OI surgery. Currently, limited studies have used BMD measurements in reporting post-operative OI outcomes and the association between the maintenance of BMD and implant efficacy has remained elusive. This review captured and analysed all studies that have reported the BMD as an objective outcome measure in patients with trans-femoral or trans-tibial OI. The PubMed, Medline, Scopus and Web of Science databases were searched using the terms 'amputation', 'osseointegration' and 'bone mineral density'. A total of 6 studies involving human participants were included for analysis. All studies used dual X-ray absorptiometry and/or X-rays for measuring BMD. Rehabilitation of trans-femoral or trans-tibial amputation using OI may help restore healthy BMD by enabling physiological bone loading. However, there is a low correlation between the BMD around the OI and the success of OI surgery or the risk of periprosthetic fractures. This review summarises the current evidence on BMD assessment in OI for lower limb amputee rehabilitation. Despite the great variability in the results, the available evidence suggests that OI may help restore BMD following surgery. The limited evidence calls for further investigation, as well as the development of a standard BMD measurement protocol.

3.
Front Bioeng Biotechnol ; 12: 1371693, 2024.
Article in English | MEDLINE | ID: mdl-38978718

ABSTRACT

Introduction: Titanium-based implants can be used to fill voids in bone reconstruction surgery. Through additive manufacturing (AM), it is possible to produce titanium implants with osteoconductive properties such as high porosity and low stiffness. AM facilitates a level of design flexibility and personalization that is not feasible with traditional techniques. Methods: In this study, osseointegration into titanium alloy (Ti-6Al-4V) lattices was investigated for 12 weeks post-implantation using a novel bicortical load-bearing ovine model. The objective was to assess the safety and efficacy of AM-fabricated implants using two lattice structures of contrasting stiffness spanning the full width of the femoral condyle. Results: This was achieved by evaluating implant osseointegration and bone-implant contact properties by histomorphometry, scoring local implant tissue responses via histopathology, and micro-computed tomography reconstruction. Discussion: We found that Ti-6Al-4V implants facilitated widespread and extensive osseointegration, with bone maturation ongoing at the conclusion of the trial period. Following the implantation period, no adverse clinical indications that could be directly ascribed to the presence of the implanted device were identified, as determined by macroscopic and microscopic observation.

4.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000425

ABSTRACT

This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.


Subject(s)
Durapatite , Nanoparticles , Osseointegration , Surface Properties , Zirconium , Zirconium/chemistry , Animals , Durapatite/chemistry , Durapatite/pharmacology , Female , Rats , Nanoparticles/chemistry , Osseointegration/drug effects , Dental Implants , Titanium/chemistry , Tibia/drug effects , Tibia/surgery , Acid Etching, Dental
5.
Int J Implant Dent ; 10(1): 34, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963524

ABSTRACT

Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.


Subject(s)
Dental Implants , Osseointegration , Surface Properties , Titanium , Humans , Titanium/chemistry , Nanostructures/chemistry , Osteoblasts , Dental Prosthesis Design
6.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999015

ABSTRACT

Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.


Subject(s)
Dental Implants , Osseointegration , Surface Properties , Titanium , Humans , Animals , Osseointegration/drug effects , Titanium/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
7.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967690

ABSTRACT

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Subject(s)
Dental Implants , Osseointegration , Osteoblasts , Surface Properties , Osteoblasts/physiology , Osteoblasts/cytology , Humans , Cell Differentiation , Cell Proliferation , Titanium/chemistry , Osteogenesis/physiology
8.
Sci Rep ; 14(1): 15339, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961115

ABSTRACT

Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.


Subject(s)
Genistein , Osseointegration , Titanium , Osseointegration/drug effects , Genistein/pharmacology , Genistein/chemistry , Titanium/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Bone-Implant Interface , Microscopy, Electron, Scanning , Prostheses and Implants , Porosity , Alloys/chemistry
9.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998421

ABSTRACT

This study aimed to histologically evaluate the effects of XPEED® and SLA surface on the mineral apposition rate (MAR) at 3 and 5 weeks in titanium dental implants placed in human bone. In total, 17 titanium dental implants with XPEED® surface (n = 9) used as test and SLA surface (n = 8) used as control were included in this study. Each patient received four doses of tetracycline 500 mg at 12 h intervals 2 weeks prior to biopsy retrieval. Implant retrieval was performed, and retrieved biopsies were carefully treated for histomorphometric evaluation under epifluorescence microscopy. At 3 and 5 weeks, newly formed bone appeared in direct contact with both types of tested surfaces. At 3 weeks, the MAR value was, respectively, 2.0 (±0.18) µm/day for XPEED® implants and 1.5 (±0.10) µm/day for SLA implants (p = 0.017). At 5 weeks, lower MAR values for both XPEED® and SLA implants were noted, with 1.2 (±0.10) µm/day and 1.1 (±0.10) µm/day, respectively (p = 0.046). The overall evaluation by linear regression analysis for both time and implant surfaces showed a decreased osteoblast activity at 5 weeks compared to 3 weeks (p < 0.005). The results of the present study show that the bone apposition rate occurs faster around implants with XPEED® surface at 3 weeks and 5 weeks of healing. MAR values may support the use of implants with XPEED® surfaces in early loading protocols.

10.
Heliyon ; 10(13): e33381, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027560

ABSTRACT

Polyetheretherketone (PEEK) exhibits excellent biocompatibility, fatigue resistance, and an elastic modulus similar to bone, presenting broad application prospects in the field of dental and maxillofacial implants. However, the bioinertness of PEEK limits its applications. In this study, we developed a method to generate biocompatible and bioactive PEEK through a simple sequential soaking process, aimed at inducing bone differentiation and enhancing antibacterial properties. Initially, a three-dimensional (3D) porous network was introduced on the PEEK surface by soaking in concentrated sulfuric acid and water. Subsequently, the sulfonated PEEK surface was treated with oxygen plasma, followed by immersion in a dopamine solution to coat a polydopamine (PDA) layer. Finally, polydopamine phosphate ester-modified 3D porous PEEK was obtained through the reaction of phosphoryl chloride with surface phenolic hydroxyl groups. Systematic studies were conducted using scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, cell proliferation and adhesion, osteogenic gene expression detection, alkaline phosphatase staining, alizarin red staining, and bacterial culture. Overall, compared to unmodified PEEK, the modified PEEK significantly enhanced in vitro cell proliferation and adhesion, osteogenic differentiation, and antibacterial properties. The simple surface modification measures combined in this study may represent a promising technology and could facilitate the application of PEEK in dental and maxillofacial implants.

11.
Biomater Adv ; 163: 213939, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954876

ABSTRACT

The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.

12.
J Adv Prosthodont ; 16(3): 189-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957293

ABSTRACT

PURPOSE: This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS: For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS: In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION: Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.

13.
Biochem Biophys Res Commun ; 727: 150316, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959732

ABSTRACT

Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.

14.
Article in English | MEDLINE | ID: mdl-38963167

ABSTRACT

OBJECTIVE: The aim of this study was to explore the effect of depression and selective serotonin reuptake inhibitors on implant osseointegration and bone healing. METHODS: Forty-eight 6- to 8-week-old SPF Sprague-Dawley male rats were randomly divided into four groups: the Control group, the Fluoxetine group, the Depression group and the De&Flu group. The rats in the Depression group and the De&Flu group were subjected to a depression modelling process, and the rats in the Control group and the Fluoxetine group were raised normally. Then, a titanium implant was placed in the right tibia of each rat. In the Fluoxetine group and De&Flu group, fluoxetine was injected subcutaneously daily, while subcutaneously injecting physiological saline in the Control group and Depression group. Collecting serum from the rats used for ELISA. The surgical area was cut for microcomputed tomography and histology observation. RESULTS: After 12 weeks, bone mineral density was lower in the De&Flu group than in the Control group, Depression group and Fluoxetine group. Bone mineral density was also lower in the Depression group and the Fluoxetine group than in the Control group. The percentage of bone-implant contact (BIC%) in De&Flu rats was lower than in the Control, Depression and Fluoxetine groups. The BIC% in the Depression group and the Fluoxetine group was lower than in the Control group. CONCLUSIONS: Depression and fluoxetine negatively affect bone density and implant osseointegration independently, and this damaging effect is exacerbated when both factors are present. The mechanism may be related to the dysregulation of the hypothalamic-pituitary-adrenal axis and inflammation in the body.

15.
Adv Healthc Mater ; : e2400810, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857489

ABSTRACT

Surface design plays a critical role in determining the integration of dental implants with bone tissue. Femtosecond laser-texturing has emerged as a breakthrough technology offering excellent uniformity and reproducibility in implant surface features. However, when compared to state-of-the-art sandblasted and acid-etched surfaces, laser-textured surface designs typically underperform in terms of osseointegration. This study investigated the capacity of a bio-inspired femtosecond laser-textured surface design to enhance osseointegration compared to state-of-the-art sandblasted & acid-etched surfaces. Laser-texturing facilitates the production of an organized trabeculae-like microarchitecture with superimposed nano-scale laser-induced periodic surface structures on both 2D and 3D samples of titanium-zirconium-alloy. Following a boiling treatment to modify the surface chemistry, improving wettability to a contact angle of 10°, laser-textured surfaces enhance fibrin network formation when in contact with human whole blood, comparable to state-of-the-art surfaces. In vitro experiments demonstrate that laser-textured surfaces significantly outperform state-of-the-art surfaces with a 2.5-fold higher level of mineralization by bone progenitor cells after 28 days of culture. Furthermore, in vivo evaluations reveal superior biomechanical integration of laser-textured surfaces after 28 days of implantation. Notably, during abiological pull-out tests, laser-textured surfaces exhibit comparable performance, suggesting that the observed enhanced osseointegration is primarily driven by the biological response to the surface. This article is protected by copyright. All rights reserved.

16.
Gait Posture ; 113: 46-52, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38843706

ABSTRACT

BACKGROUND: A bone-anchored limb (BAL) is an alternative to a traditional socket-type prosthesis for people with transfemoral amputation. Early laboratory-based evidence suggests improvement in joint and limb loading mechanics during walking with a BAL compared to socket prosthesis use. However, changes in cumulative joint and limb loading measures, which may be predictive of degenerative joint disease progression, remain unknown. RESEARCH QUESTION: Do cumulative total limb and hip joint loading during walking change using a BAL for people with unilateral transfemoral amputation, compared to prior socket prosthesis use? METHODS: A case-series cohort of eight participants with prior unilateral transfemoral amputation who underwent BAL hardware implantation surgery were retrospectively analyzed (4 M/4 F; BMI: 27.7 ± 3.1 kg/m2; age: 50.4 ± 10.2 years). Daily step count and whole-body motion capture data were collected before (using socket prosthesis) and one-year after BAL hardware implantation. Cumulative total limb and hip joint loading and between-limb loading symmetry metrics were calculated during overground walking at both time points and compared using Cohen's d effect sizes. RESULTS: One year after BAL hardware implantation, participants demonstrated bilateral increases in cumulative total limb loading (amputated: d = -0.65; intact: d = -0.72) and frontal-plane hip moment (amputated: d = -1.29; intact: d = -1.68). Total limb loading and hip joint loading in all planes remained asymmetric over time, with relative overloading of the intact limb in all variables of interest at the one-year point. SIGNIFICANCE: Despite increases in cumulative total limb and hip joint loading, between-limb loading asymmetries persist. Habitual loading asymmetry has been implicated in contributing to negative long-term joint health and onset or progression of degenerative joint diseases. Improved understanding of methods to address habitual loading asymmetries is needed to optimize rehabilitation and long-term joint health as people with transfemoral amputation increase physical activity when using a BAL.

17.
Cureus ; 16(5): e60255, 2024 May.
Article in English | MEDLINE | ID: mdl-38872641

ABSTRACT

Prosthodontics, which is removable and fixed, is the branch dealing with the replacement of missing teeth. Implant therapy is the popular treatment modality and commonly preferred treatment option by many patients and clinicians for missing teeth in recent years. Primary implant stability (PIS) is one of the crucial factors for osseointegration. It has been considered a crucial factor in the success of implants. Moreover, several factors influence PIS. On the other hand, both secondary implant stability and osseointegration are influenced by the PIS. Bone density, bone volume, bone-to-implant contact, and other factors that enhance or degrade the primary stability. Certain host sites such as the maxillary posterior region demand more dense bone to achieve desired results as they are the low-density areas of the jaw. So, a new promising and growing innovative concept of osseodensification (OD) offers a great solution with multiple benefits and desirable results. This review article aims to enlighten the multiple benefits of OD technique and their mechanism of action.

18.
Int J Oral Maxillofac Implants ; (3): 435-445, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905118

ABSTRACT

PURPOSE: To evaluate the efficacy of combined therapy of teriparatide and raloxifene on the osseointegration of titanium dental implants in a rabbit model of osteoporotic bone. MATERIALS AND METHODS: Sixty female rabbits were randomly divided into six groups. The sham ovariectomy group (control) consisted of animals that received no medication. Animals in the ovariectomy group (OVX) underwent ovariectomy and received no medication. The combined group consisted of ovariectomized animals that received combined teriparatide (10 mg/kg) for 12 weeks and raloxifene (10 mg/kg) for 12 weeks. The sequential group (SEQ) consisted of ovariectomized animals that received teriparatide (10 mg/kg) for the first 6 weeks and raloxifene therapy (10 mg/kg) for the following 6 weeks sequentially. The parathormone (PTH) and raloxifene (RAL) groups consisted of ovariectomized animals that received only teriparatide (10 mg/kg) for 12 weeks or raloxifene (10 mg/kg) for 12 weeks, respectively. Dental implants (Bilimplant) were placed in the proximal metaphysis of both tibias in all rabbits. Histomorphometric and microCT studies were performed on the specimens obtained from the right tibia bone. Removal torque (RTQ) and implant stability quotient (ISQ) tests were performed on the specimens obtained from the left tibia bone. The results were compared and evaluated statistically. RESULTS: RTQ analysis revealed a statistically significant difference between the mean values of the combined group (93.01 ± 27.19 Ncm) and the OVX group (49.6 ± 12.5 Ncm) (P = .015). The highest mean T0 (implantation day) value was obtained in the control group (67.1 ± 3.4 Ncm), and the lowest mean value was obtained in the OVX group (61.4 ± 3.8 Ncm). The highest T1 mean (3 months after implantation) was obtained by the combined group (76.6 ± 3.8 Ncm), and the lowest mean was obtained by the OVX group (68.9 ± 6.2 Ncm). Histomorphometric analyses showed that the mean percentage of bone-to-implant contact (BIC%) of the combined group (51.2%) was significantly higher than that of the OVX group (28.6%) (P =.006). In the microCT examinations, it was found that the mean BIC% value of the combined group (41.1%) was significantly higher than that of the OVX group (24.1%) (P < .001). CONCLUSIONS: According to the results of the current study, combined therapy of teriparatide and raloxifene improves the BIC and osseointegration of titanium dental implants in osteoporotic bone compared with sequential or independent therapy with these agents.


Subject(s)
Bone Density Conservation Agents , Dental Implants , Disease Models, Animal , Osseointegration , Osteoporosis , Ovariectomy , Raloxifene Hydrochloride , Teriparatide , Animals , Rabbits , Teriparatide/therapeutic use , Teriparatide/pharmacology , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Osseointegration/drug effects , Female , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Osteoporosis/drug therapy , Dental Implantation, Endosseous/methods , X-Ray Microtomography , Random Allocation , Titanium , Drug Therapy, Combination
20.
Int J Nanomedicine ; 19: 5011-5020, 2024.
Article in English | MEDLINE | ID: mdl-38832337

ABSTRACT

Purpose: Atomic layer deposition (ALD) is a method that can deposit zirconia uniformly on an atomic basis. The effect of deposited zirconia on titanium implants using ALD was evaluated in vivo. Methods: Machined titanium implants (MTIs) were used as the Control. MTIs treated by sandblasting with large grit and acid etching (SA) and MTIs deposited with zirconia using ALD are referred to as Groups S and Z, respectively. Twelve implants were prepared for each group. Six rabbits were used as experimental animals. To evaluate the osteogenesis and osteocyte aspects around the implants, radiological and histological analyses were performed. The bone-to-implant contact (BIC) ratio was measured and statistically analyzed to evaluate the osseointegration capabilities. Results: In the micro-CT analysis, more radiopaque bone tissues were observed around the implants in Groups S and Z. Histological observation found that Groups S and Z had more and denser mature bone tissues around the implants in the cortical bone area. Many new and mature bone tissues were also observed in the medullary cavity area. For the BIC ratio, Groups S and Z were significantly higher than the Control in the cortical bone area (P < 0.017), but there was no significant difference between Groups S and Z. Conclusion: MTIs deposited with zirconia using ALD (Group Z) radiologically and histologically showed more mature bone formation and activated osteocytes compared with MTIs (Control). Group Z also had a significantly higher BIC ratio than the Control. Within the limitations of this study, depositing zirconia on the surface of MTIs using ALD can improve osseointegration in vivo.


Subject(s)
Osseointegration , Titanium , Zirconium , Animals , Zirconium/chemistry , Zirconium/pharmacology , Rabbits , Titanium/chemistry , Titanium/pharmacology , Osseointegration/drug effects , Surface Properties , X-Ray Microtomography , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Bone-Implant Interface , Osteogenesis/drug effects , Dental Implants , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...