Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 807
Filter
1.
Autoimmunity ; 57(1): 2364686, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946534

ABSTRACT

BACKGROUND: Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE: This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS: An injury cell model was established by treating chondrocytes with IL-1ß. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS: Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION: Osteocyte-derived exosomal DLX2 alleviated IL-1ß-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.


Subject(s)
Chondrocytes , Exosomes , Homeodomain Proteins , Osteoarthritis , Osteocytes , Transcription Factors , Wnt Signaling Pathway , Exosomes/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/pathology , Mice , Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Osteocytes/metabolism , Chondrocytes/metabolism , Disease Models, Animal , Humans , Interleukin-1beta/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Apoptosis , Cartilage/metabolism , Cartilage/pathology , Male , Cell Movement , Cell Survival
2.
Biochem Biophys Res Commun ; 727: 150315, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38950493

ABSTRACT

In response to mechanical loading of bone, osteocytes produce nitric oxide (NO•) and decrease sclerostin protein expression, leading to an increase in bone mass. However, it is unclear whether NO• production and sclerostin protein loss are mechanistically linked, and, if so, the nature of their hierarchical relationship within an established mechano-transduction pathway. Prior work showed that following fluid-shear stress (FSS), osteocytes produce NOX2-derived reactive oxygen species, inducing calcium (Ca2+) influx. Increased intracellular Ca2+ results in calcium-calmodulin dependent protein kinase II (CaMKII) activation, which regulates the lysosomal degradation of sclerostin protein. Here, we extend our discoveries, identifying NO• as a regulator of sclerostin degradation downstream of mechano-activated CaMKII. Pharmacological inhibition of nitric oxide synthase (NOS) activity in Ocy454 osteocyte-like cells prevented FSS-induced sclerostin protein loss. Conversely, short-term treatment with a NO• donor in Ocy454 cells or isolated murine long bones was sufficient to induce the rapid decrease in sclerostin protein abundance, independent of changes in Sost gene expression. Ocy454 cells express all three NOS genes, and transfection with siRNAs targeting eNOS/Nos3 was sufficient to prevent FSS-induced loss of sclerostin protein, while siRNAs targeting iNOS/Nos2 mildly blunted the loss of sclerostin but did not reach statistical significance. Similarly, siRNAs targeting both eNOS/Nos3 and iNOS/Nos2 prevented FSS-induced NO• production. Together, these data show iNOS/Nos2 and eNOS/Nos3 are the primary producers of FSS-dependent NO•, and that NO• is necessary and sufficient for sclerostin protein control. Further, selective inhibition of elements within this sclerostin-controlling mechano-transduction pathway indicated that NO• production occurs downstream of CaMKII activation. Targeting Camk2d and Camk2g with siRNA in Ocy454 cells prevented NO• production following FSS, indicating that CaMKII is needed for NO• production. However, NO• donation (1min) resulted in a significant increase in CaMKII activation, suggesting that NO• may have the ability to tune CaMKII response. Together, these data support that CaMKII is necessary for, and may be modulated by NO•, and that the interaction of these two signals is involved in the control of sclerostin protein abundance, consistent with a role in bone anabolic responses.

3.
Curr Osteoporos Rep ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980532

ABSTRACT

PURPOSE OF REVIEW: Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS: We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.

4.
J Bone Miner Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990205

ABSTRACT

Coupling, the mechanism that controls the sequence of events in bone remodelling, is a fundamental theory for understanding the way the skeleton changes throughout life. This review is an adapted version of the Louis V Avioli lecture, delivered at the Annual Scientific Meeting of the American Society of Bone and Mineral Research. It outlines the history of the coupling concept and details how coupling occurs within trabecular and cortical bone and describes its multiple contexts and the many mechanisms suggested to couple bone forming osteoblasts to the prior action of osteoclasts on the same bone surface. These mechanisms include signals produced at each stage of the remodelling sequence (resorption, reversal, and formation), such as factors released by osteoclasts through their resorptive action and through protein synthesis, molecules deposited in the cement line during the reversal phase, and potentially signals from osteocytes within the local bone environment. The review highlights two examples of coupling factors (Cardiotrophin 1 and EphrinB2:EphB4) to illustrate the limited data available, and the need to integrate both the many functions of these factors within the basic multicellular unit (BMU), and the multiple origins of these factors, including other cell types present during the remodelling sequence (such as osteocytes, macrophages, endothelial cells, and T-cells).


Coupling is a fundamental process by which bone resorbing cells (osteoclasts) are followed by bone forming cells (osteoblasts) on the same surface during the process of bone remodelling. This review outlines the history, basic concepts, and mechanisms proposed, and suggests directions for further research into the way this sequence of events in controlled in bone maintenance, development, and healing.

5.
J Bone Miner Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959852

ABSTRACT

Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. Bone formation is increased by removing the PI3K inhibitor PTEN, but the effect of direct PI3K in the osteoblast lineage has not been reported. We introduced a known gain-of-function mutation in Pik3ca, the gene encoding the p110α catalytic subunit of PI3K, in osteocytes and late osteoblasts using the dentin matrix protein-1 Cre (Dmp1Cre) mouse and assessed the skeletal phenotype. Femur shape was grossly normal, but cortical thickness was significantly greater in both male and female Dmp1Cre.Pik3caH1047R mice, leading to almost doubled bone strength at 12 weeks of age. Both sexes had smaller marrow areas from 6 weeks of age. Female mice also exhibited greater cross sectional area, which continued to increase until 24 weeks of age, resulting in a further increase in bone strength. While both male and female mice had increased endocortical mineralizing surface, only female mice had increased periosteal mineralizing surface. The bone formed in the Dmp1Cre.Pik3caH1047R mice showed no increase in intracortical remodeling nor any defect in cortical bone consolidation. In contrast, on both endocortical and periosteal surfaces, there was a greater extent of lamellar bone formation with highly organized osteocyte networks extending along the entire surface at a greater thickness than in control mice. In conclusion, direct activation of PI3Kα in cells targeted by Dmp1Cre leads to high cortical bone mass and strength with abundant lamellar cortical bone in female and male mice with no increase in intracortical remodeling. This differs from the effect of PTEN deletion in the same cells, suggesting that activating PI3Kα in osteoblasts and osteocytes may be a more suitable target to promote formation of lamellar bone.


Patients with genetic activation of an enzyme called phosphoinositide-3 kinase (PI3K) have tissue overgrowth syndromes, where parts of the body become enlarged, sometimes including the skeleton. There are two types of mutations that cause these problems: one that directly causes the PI3K enzyme to be more active, or one that removes the normal brake on PI3K signaling (called PTEN). We studied the effect of directly activating PI3K enzyme specifically in osteoblasts (the cells that form bone) and osteocytes (osteoblasts that make a network inside the bone tissue itself). We found mice with these mutations formed normally shaped bones that were very strong because the outer shell was thicker than usual. In both male and female mice, it became thicker on the inside of the shell, but in female mice it also became thicker on the outside, making the bones even stronger over time. The new bone was well-organized bone, which likely helped make the increase in bone strength so profound. This is very different to what has previously been shown in mice with the other type of mutation in their bone forming cells; those mice had a shell that contained many large holes (pores). This indicates that directly stimulating PI3K enzyme is more beneficial for bone than removing the PTEN brake.

6.
Cell Rep ; 43(7): 114397, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38935499

ABSTRACT

With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-ß-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/ß-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.

7.
Cell Rep ; 43(7): 114363, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38935505

ABSTRACT

The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.

8.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928355

ABSTRACT

The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/ß-Tricalcium phosphate (E-rhBMP-2/ß-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/ß-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/ß-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/ß-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.


Subject(s)
Bone Morphogenetic Protein 2 , Calcium Phosphates , Disease Models, Animal , Osteocytes , Recombinant Proteins , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/metabolism , Osteocytes/drug effects , Calcium Phosphates/pharmacology , Mice , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Bisphosphonate-Associated Osteonecrosis of the Jaw/etiology , Bisphosphonate-Associated Osteonecrosis of the Jaw/pathology , Humans , Bone Regeneration/drug effects , Male , Tooth Extraction/adverse effects , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Alveolar Process/drug effects , Alveolar Process/pathology
9.
J Bone Metab ; 31(2): 101-113, 2024 May.
Article in English | MEDLINE | ID: mdl-38886968

ABSTRACT

BACKGROUND: Yerba mate (YM, Ilex paraguariensis) consumption beneficially affects the bones. However, whether YM components exert their effect on bone cells directly remains elusive. METHODS: We evaluated how main YM components affect osteoblastic (MC3T3-E1) and osteocytic (MLO-Y4) cells in vitro when administered separately or in an aqueous extract. MC3T3-E1 and MLO-Y4 cells were exposed to three different experimental conditions: (1) Caffeine, chlorogenic acid, and their combinations; (2) Caffeine, rutin, and their combinations; (3) Aqueous YM extract. RESULTS: All polyphenol and caffeine concentrations as well as that of their tested combinations significantly increased MC3T3-E1 cell viability from 16.6% to 34.8% compared to the control. In MLO-Y4 cells, the lowest rutin and the two highest caffeine concentrations significantly increased cell viability by 11.9, 14.9, and 13.7%, respectively. While rutin and caffeine combinations tended to increase MLO-Y4 cell viability, different chlorogenic acid and caffeine combinations did not affect it. Finally, the aqueous YM extract significantly increased MLO-Y4, MC3T3-E1, and differentiated MC3T3-E1 cell viability compared to the control without treatment. CONCLUSIONS: YM components (rutin, chlorogenic acid, and caffeine) positively affected bone cells, mainly pre-osteoblast cells. Moreover, the aqueous YM extract significantly increased MLO-Y4, MC3T3-E1, and differentiated MC3T3-E1 cell viabilities indicating an additional relevant nutritional property of YM infusion. Further studies would be required to elucidate the underlying effector mechanism of YM on the bones and its relationship with previously described in vivo positive effects.

10.
Elife ; 132024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910553

ABSTRACT

Examination of bacteria/host cell interactions is important for understanding the aetiology of many infectious diseases. The colony forming unit (CFU) has been the standard for quantifying bacterial burden for the past century, however, this suffers from low sensitivity and is dependent on bacterial culturability in vitro. Our data demonstrate the discrepancy between the CFU and bacterial genome copy number in an osteomyelitis-relevant co-culture system and we confirm diagnosis and quantify bacterial load in clinical bone specimens. This study provides an improved workflow for the quantification of bacterial burden in such cases.


Subject(s)
Osteomyelitis , Osteomyelitis/microbiology , Humans , Bacterial Load , Coculture Techniques , Colony Count, Microbial , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification
11.
Bone ; 186: 117163, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38857854

ABSTRACT

Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.


Subject(s)
Aging , Mice, Inbred C57BL , Osteocytes , Animals , Female , Osteocytes/metabolism , Aging/physiology , Mice , Bone Resorption/pathology , Bone Resorption/metabolism , Femur/metabolism , Bone Remodeling/physiology
12.
Bone ; 186: 117147, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38866124

ABSTRACT

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCµ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.


Subject(s)
Cell Membrane , Mice, Knockout , Osteocytes , Animals , Osteocytes/metabolism , Osteocytes/drug effects , Cell Membrane/metabolism , Mice , Mechanotransduction, Cellular/drug effects , Protein Kinase C/metabolism
13.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38849015

ABSTRACT

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Subject(s)
Apoptosis , Bone Neoplasms , Carcinoma, Renal Cell , Extracellular Matrix Proteins , Gap Junctions , Kidney Neoplasms , Osteocytes , Osteocytes/metabolism , Osteocytes/pathology , Humans , Animals , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/secondary , Apoptosis/drug effects , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Gap Junctions/metabolism , Gap Junctions/pathology , Extracellular Matrix Proteins/metabolism , Mice , Disease Progression , Connexin 43/metabolism , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Osteolysis/pathology , Osteolysis/metabolism , Female
14.
Article in English | MEDLINE | ID: mdl-38847078

ABSTRACT

OBJECTIVES: The incorporation of retromolar bone grafts used for alveolar ridge augmentation is not well understood. This prospective observational study aims to supply histomorphometrical data from bone graft biopsies taken at the time of retrieval and after a 3-month healing period using patient-matched biopsies. MATERIALS AND METHODS: In 17 patients, trephine biopsies of the graft were acquired at the time of graft retrieval and after a 3-month healing period. The biopsies were compared histomorphometrically regarding the number of osteocytes, appearance of osteocyte lacunae, quantity, surface area, and activity of the Haversian canals. RESULTS: All grafts appeared clinically stable after screw removal and 17 implants were placed. Histomorphometric analysis revealed no significant difference in the number of osteocytes (p = .413), osteocyte lacunae (p = .611), the ratio of filled/empty osteocyte lacunae (p = .467) and active Haversian canals (p = .495) between the biopsies retrieved after a 3-months healing period with those at the time of grafting. The only significant difference was noted in the mean surface area of the Haversian canals (p = .002). Specifically, the grafts post 3-month healing showed a significantly larger mean area (0.069 mm2) compared to the time of grafting (0.029 mm2). CONCLUSION: This study demonstrates, compared to other data, a high rate of vital structures in retromolar bone block grafts after 3 months of healing, exhibiting the same histological features in comparison to the biopsies from the native alveolar ridge. Standard histomorphometrical parameters, e.g., the amount of filled or empty osteocyte lacunae for the description of the vitality of the graft need to be reappraised.

15.
Front Cell Infect Microbiol ; 14: 1403289, 2024.
Article in English | MEDLINE | ID: mdl-38915921

ABSTRACT

Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.


Subject(s)
Anti-Bacterial Agents , Autophagy , Osteocytes , Rifampin , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Autophagy/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Osteocytes/drug effects , Osteocytes/microbiology , Anti-Bacterial Agents/pharmacology , Humans , Vancomycin/pharmacology , Rifampin/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Host-Pathogen Interactions , DNA, Bacterial/genetics
16.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731934

ABSTRACT

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Subject(s)
Bone Remodeling , Circadian Rhythm , Bone Remodeling/genetics , Animals , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Humans , Osteoblasts/metabolism , Osteogenesis/genetics , Osteoclasts/metabolism , Gene Expression Regulation , Bone and Bones/metabolism
17.
Calcif Tissue Int ; 115(1): 78-84, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753025

ABSTRACT

Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 µm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.


Subject(s)
Bone Remodeling , Osteoarthritis, Knee , Osteocytes , Tibia , X-Ray Microtomography , Humans , Osteocytes/pathology , Tibia/pathology , Tibia/diagnostic imaging , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/diagnostic imaging , Male , Aged , Female , Middle Aged , X-Ray Microtomography/methods , Bone Remodeling/physiology
18.
J Histochem Cytochem ; 72(5): 309-327, 2024 05.
Article in English | MEDLINE | ID: mdl-38725403

ABSTRACT

To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.


Subject(s)
Cortical Bone , Endothelial Cells , Parathyroid Hormone , Animals , Mice , Parathyroid Hormone/pharmacology , Parathyroid Hormone/administration & dosage , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cortical Bone/drug effects , Cortical Bone/metabolism , Porosity , Male , Osteoblasts/drug effects , Osteoblasts/metabolism , Immunohistochemistry , Femur/drug effects , Femur/blood supply , Femur/metabolism , Humans
19.
Sci Rep ; 14(1): 10345, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710795

ABSTRACT

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Subject(s)
Cell Differentiation , Coculture Techniques , Osteoblasts , Humans , Osteoblasts/metabolism , Osteoblasts/cytology , Cellular Microenvironment , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Osteogenesis , Cell Aggregation , Cells, Cultured
20.
Biomed Eng Online ; 23(1): 44, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705993

ABSTRACT

BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.


Subject(s)
Exosomes , MicroRNAs , Osteocytes , Osteogenesis , Stress, Mechanical , Animals , Mice , Cell Line , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes/cytology , Osteocytes/metabolism , Osteogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...