Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Med Phys ; 49(1): 73-83, 2024.
Article in English | MEDLINE | ID: mdl-38828075

ABSTRACT

Background: Accurate dose measurements are difficult in small fields due to charge particle disequilibrium, partial source occlusion, steep dose gradient, and the finite size of the detector. Aim: The study aims to determine the output factor using various detectors oriented in parallel and perpendicular orientations for three different tertiary collimating systems using 15 MV photon beams. In addition, this study analyzes how the output factor could be affected by different configurations of X and Y jaws above the tertiary collimators. Materials and Methods: Small field output factor measurements were carried out with three detectors for different tertiary collimating systems such as BrainLab stereotactic cones, BrainLab mMLC and Millennium MLC namely. To analyze the effect of jaw position on output factor, measurements have been carried out by positioning the jaws at the edge, 0.25, 0.5, and 1.0 cm away from the tertiary collimated field. Results: The data acquired with 15 MV photon beams show significant differences in output factor obtained with different detectors for all collimating systems. For smaller fields when compared to microDiamond, the SRS diode underestimates the output by up to -1.7% ± 0.8% and -2.1% ± 0.3%, and the pinpoint ion chamber underestimates the output by up to -8.1% ± 1.4% and -11.9% ± 1.9% in their parallel and perpendicular orientation respectively. A large increase in output factor was observed in the small field when the jaw was moved 0.25 cm symmetrically away from the tertiary collimated field. Conclusion: The investigated data on the effect of jaw position inferred that the position of the X and Y jaw highly influences the output factors of the small field. It also confirms that the output factor highly depends on the configuration of X and Y jaw settings, the tertiary collimating system as well as the orientation of the detectors in small fields.

2.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38906125

ABSTRACT

Purpose/Objective. Small-field measurement poses challenges. Although many high-resolution detectors are commercially available, the EPID for small-field dosimetry remains underexplored. This study aimed to evaluate the performance of EPID for small-field measurements and to derive tailored correction factors for precise small-field dosimetry verification.Material/Methods. Six high-resolution radiation detectors, including W2 and W1 plastic scintillators, Edge-detector, microSilicon, microDiamond and EPID were utilized. The output factors, depth doses and profiles, were measured for various beam energies (6 MV-FF, 6 MV-FFF, 10 MV-FF, and 10 MV-FFF) and field sizes (10 × 10 cm2, 5 × 5 cm2, 4 × 4 cm2, 3 × 3 cm2, 2 × 2 cm2, 1 × 1 cm2, 0.5 × 0.5 cm2) using a Varian Truebeam linear accelerator. During measurements, acrylic plates of appropriate depth were placed on the EPID, while a 3D water tank was used with five-point detectors. EPID measured data were compared with W2 plastic scintillator and measurements from other high-resolution detectors. The analysis included percentage deviations in output factors, differences in percentage for PDD and for the profiles, FWHM, maximum difference in the flat region, penumbra, and 1D gamma were analyzed. The output factor and depth dose ratios were fitted using exponential functions and fractional polynomial fitting in STATA 16.2, with W2 scintillator as reference, and corresponding formulae were obtained. The established correction factors were validated using two Truebeam machines.Results. When comparing EPID and W2-PSD across all field-sizes and energies, the deviation for output factors ranged from 1% to 15%. Depth doses, the percentage difference beyond dmax ranged from 1% to 19%. For profiles, maximum of 4% was observed in the 100%-80% region. The correction factor formulae were validated with two independent EPIDs and closely matched within 3%.Conclusion. EPID can effectively serve as small-field dosimetry verification tool with appropriate correction factors.


Subject(s)
Particle Accelerators , Radiometry , Radiometry/instrumentation , Radiometry/methods , Particle Accelerators/instrumentation , Equipment Design , Phantoms, Imaging , Calibration , Humans , Scintillation Counting/instrumentation , Scintillation Counting/methods , Reproducibility of Results
3.
Phys Eng Sci Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753285

ABSTRACT

This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10 × 10 to 0.5 × 0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10 × 10 and 1.5 × 1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS.

4.
Phys Med Biol ; 69(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38211314

ABSTRACT

Objective.Determining and verifying the number of monitor units is crucial to achieving the desired dose distribution in radiotherapy and maintaining treatment efficacy. However, current commercial treatment planning system(s) dedicated to ocular passive eyelines in proton therapy do not provide the number of monitor units for patient-specific plan delivery. Performing specific pre-treatment field measurements, which is time and resource consuming, is usually gold-standard practice. This proof-of-concept study reports on the development of a multi-institutional-based generalized model for monitor units determination in proton therapy for eye melanoma treatments.Approach.To cope with the small number of patients being treated in proton centers, three European institutes participated in this study. Measurements data were collected to address output factor differences across the institutes, especially as function of field size, spread-out Bragg peak modulation width, residual range, and air gap. A generic model for monitor units prediction using a large number of 3748 patients and broad diversity in tumor patterns, was evaluated using six popular machine learning algorithms: (i) decision tree; (ii) random forest, (iii) extra trees, (iv) K-nearest neighbors, (v) gradient boosting, and (vi) the support vector regression. Features used as inputs into each machine learning pipeline were: Spread-out Bragg peak width, range, air gap, fraction and calibration doses. Performance measure was scored using the mean absolute error, which was the difference between predicted and real monitor units, as collected from institutional gold-standard methods.Main results.Predictions across algorithms were accurate within 3% uncertainty for up to 85.2% of the plans and within 10% uncertainty for up to 98.6% of the plans with the extra trees algorithm.Significance.A proof-of-concept of using machine learning-based generic monitor units determination in ocular proton therapy has been demonstrated. This could trigger the development of an independent monitor units calculation tool for clinical use.


Subject(s)
Eye Neoplasms , Melanoma , Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Machine Learning , Protons , Radiotherapy Dosage , Eye Neoplasms/radiotherapy
5.
Phys Med Biol ; 69(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38181420

ABSTRACT

Objective. Small-field dosimetry is an ongoing challenge in radiotherapy quality assurance (QA) especially for radiosurgery systems such as CyberKnifeTM. The objective of this work is to demonstrate the use of a plastic scintillator imaged with a commercial camera to measure the output factor of a CyberKnife system. The output factor describes the dose on the central axis as a function of collimator size, and is a fundamental part of CyberKnife QA and integral to the data used in the treatment planning system.Approach. A self-contained device consisting of a solid plastic scintillator and a camera was build in a portable Pelicase. Photographs were analysed using classical methods and with convolutional neural networks (CNN) to predict beam parameters which were then compared to measurements.Main results. Initial results using classical image processing to determine standard QA parameters such as percentage depth dose (PDD) were unsuccessful, with 34% of points failing to meet the Gamma criterion (which measures the distance between corresponding points and the relative difference in dose) of 2 mm/2%. However, when images were processed using a CNN trained on simulated data and a green scintillator sheet, 92% of PDD curves agreed with measurements with a microdiamond detector to within 2 mm/2% and 78% to 1%/1 mm. The mean difference between the output factors measured using this system and a microdiamond detector was 1.1%. Confidence in the results was enhanced by using the algorithm to predict the known collimator sizes from the photographs which it was able to do with an accuracy of less than 1 mm.Significance. With refinement, a full output factor curve could be measured in less than an hour, offering a new approach for rapid, convenient small-field dosimetry.


Subject(s)
Deep Learning , Radiosurgery , Radiometry/methods , Radiosurgery/methods , Algorithms , Neural Networks, Computer
6.
Med Phys ; 51(5): 3677-3686, 2024 May.
Article in English | MEDLINE | ID: mdl-38266116

ABSTRACT

BACKGROUND: Dose area product in water (DAPw) in small fields relies on the use of detectors with a sensitive area larger than the irradiation field. This quantity has recently been used to establish primary standards down to 5 mm field size, with an uncertainty smaller than 0.7%. It has the potential to decrease the uncertainty related to field output factors, but is not currently integrated into treatment planning systems. PURPOSE: This study aimed to explore the feasibility of converting DAPw into a point dose in small fields by determining the volume averaging correction factor. By determining the field output factors, a comparison between the so-called "DAPw to point dose" approach and the IAEA TRS483 methodology was performed. METHOD: Diodes, microdiamonds, and a micro ionization chamber were used to measure field output factors following the IAEA TRS483 methodology on two similar linacs equipped with circular cones down to 6 mm diameter. For the "DAPw to point dose" approach, measurements were performed with a dedicated and built-in-house 3 cm diameter plane-parallel ionization chamber calibrated in terms of DAPw in the French Primary Dosimetry Standards Laboratory LNE-LNHB. Beam profile measurements were performed to generate volume averaging correction factors enabling the conversion of an integral DAPw measurement into a point dose and the determination of the field output factors. Both sets of field output factors were compared. RESULTS: According to the IAEA TRS483 methodology, field output factors were within ±3% for all detectors on both linacs. Large variations were observed for the volume averaging correction factors with a maximum spread between the detectors of 26% for the smallest field size. Consequently, deviations of up to 15% between the "IAEA TRS483" and the "DAPw to point dose" methodologies were found for the field output factor of the smallest field size. This was attributed to the difficulty in accurately determining beam profiles in small fields. CONCLUSION: Although primary standards associated with small uncertainties can be established in terms of DAPw in a primary laboratory, the "DAPw to point dose" methodology requires volume averaging correction to derive a field output factor from DAPw measurements. None of the point detectors studied provided satisfactory results, and additional work using other detectors, such as film, is still required to allow the transfer of a DAP primary standard to users in terms of absorbed point dose.


Subject(s)
Feasibility Studies , Radiation Dosage , Radiometry , Radiometry/instrumentation , Uncertainty , Radiotherapy Dosage , Particle Accelerators , Calibration
7.
Phys Eng Sci Med ; 47(1): 371-379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37943444

ABSTRACT

The TRS-483 Code of Practice (CoP) provides generic relative output correction factors, [Formula: see text], for a range of detectors and beam energies as used in small field dosimetry. In this work, the convergence of the relative output factors (ROFs) for 6 MV X-ray beams with and without flattening filters was investigated under different combinations of beam collimation and published detector correction factors. The SFD, PFD and CC04 (IBA) were used to measure ROFs of a TrueBeam STx linear accelerator with small fields collimated by the high-definition MLC, which has 2.5 and 5.0 mm projected leaves. Two configurations were used for the collimators: (1) fixed jaws at 10 × 10 cm2 and (2) with a 2 mm offset from the MLC edge, in line with the recommended geometry from IROC-H as part of their auditing program and published dataset. The [Formula: see text] factors for the three detectors were taken from the TRS483 CoP and other published works. The average differences of ROFs measured by detectors under MLC fields with fixed jaws and with 2 mm jaws offset for the 6 MV-WFF beam are 1.4% and 1.9%, respectively. Similarly, they are 2.3% and 2.4% for the 6MV-FFF beam. The relative differences between the detector-average ROFs and the corresponding IROC-H dataset are 2.0% and 3.1% for the 6 MV-WFF beam, while they are 2.4% and 3.2% for the 6MV-FFF beam at the smallest available field size of 2 × 2 cm2. For smaller field sizes, the average ROFs of the three detectors and corresponding results from Akino and Dufreneix showed the largest difference to be 6.6% and 6.2% under the 6 MV-WFF beam, while they are 3.4% and 3.6% under the 6 MV-WFF beam at the smallest field size of 0.5 × 0.5 cm2. Some well-published specific output correction factors for different small field detector types give better convergence in the calculation of the relative output factor in comparison with the generic data provided by the TRS-483 CoP. Relative output factor measurements should be performed as close as possible to the clinical settings including a combination of collimation systems, beam types and using at least three different types of small field detector for more accurate computation of the treatment planning system. The IROC-H dataset is not available for field size smaller than 2 × 2 cm2 for double checks and so that user should carefully check with other publications with the same setting.


Subject(s)
Photons , Radiometry , Photons/therapeutic use , Particle Accelerators , Phantoms, Imaging
8.
J Med Phys ; 48(3): 281-288, 2023.
Article in English | MEDLINE | ID: mdl-37969152

ABSTRACT

Aim: In this study, a 6MV flattening filter (FF) and 6MV FF Free (FFF) photon beam small-field output factors (OF) were measured with various collimators using different detectors. The corrected OFs were compared with the treatment planning system (TPS) calculated OFs. Materials and Methods: OF measurements were performed with four different types of collimators: Varian Millennium multi-leaf collimator (MLC), Elekta Agility MLC, Apex micro-MLC (mMLC) and a stereotactic cone. Ten detectors (four ionization chambers and six diodes) were used to perform the OF measurements at a depth of 10 cm with a source-to-surface distance of 90 cm. The corrected OF was calculated from the measurements. The corrected OFs were compared with existing TPS-generated OFs. Results: The use of detector-specific output correction factor (OCF) in the PTW diode P detector reduced the OF uncertainty by <4.1% for 1 cm × 1 cm Sclin. The corrected OF was compared with TPS calculated OF; the maximum variation with the IBA CC01 chamber was 3.75%, 3.72%, 1.16%, and 0.90% for 5 mm stereotactic cone, 0.49 cm × 0.49 cm Apex mMLC, 1 cm × 1 cm Agility MLC, and 1 cm × 1 cm Millennium MLC, respectively. Conclusion: The technical report series-483 protocol recommends that detector-specific OCF should be used to calculate the corrected OF from the measured OF. The implementation of OCF in the TPS commissioning will reduce the small-field OF variation by <3% for any type of detector.

9.
J Appl Clin Med Phys ; 24(12): e14191, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922380

ABSTRACT

PURPOSE: Modern radiotherapy techniques often deliver small radiation fields. In this work, a practical Electron Paramagnetic Resonance (EPR) dosimetry protocol is adapted and applied to measure output factors (OF) in small fields of a 6 MV radiotherapy system. Correction factors and uncertainties are presented and OFs are compared to the values obtained by following TRS-483 using an ionization chamber (IC). METHODS: Irradiations were performed at 10 cm depth inside a water phantom positioned at 90 cm source to surface distance with a 6 MV flattening filter free photon beam of a Halcyon radiotherapy system. OFs for different nominal field sizes (1 × 1, 2 × 2, 3 × 3, 4 × 4, normalized to 10 × 10 cm2 ) were determined with a PinPoint 3D (PTW 31022) IC following TRS-483 as well as with alanine pellets with a diameter of 4 mm and a height of 2.4 mm. EPR readout was performed with a benchtop X-band spectrometer. Correction factors due to volume averaging and due to positional uncertainties were derived from 2D film measurements. RESULTS: OFs obtained from both dosimeter types agreed within 0.7% after applying corrections for the volume averaging effect. For the used alanine pellets, volume averaging correction factors of 1.030(2) for the 1 × 1 cm2 field and <1.002 for the larger field sizes were determined. The correction factor for positional uncertainties of 1 mm was in the order of 1.018 for the 1 × 1 cm2 field. Combined relative standard uncertainties uc for the OFs resulting from alanine measurements were estimated to be below 1.5% for all field sizes. For IC measurements, uc was estimated to be below 1.0%. CONCLUSIONS: A practical EPR dosimetry protocol is adaptable for precisely measuring OFs in small fields down to 1 × 1 cm2 . It is recommended to consider the effect of positional uncertainties for field sizes <2 × 2 cm2 .


Subject(s)
Alanine , Radiometry , Humans , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Particle Accelerators , Phantoms, Imaging , Photons
10.
Appl Radiat Isot ; 202: 111066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865066

ABSTRACT

This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods , Algorithms , Photons/therapeutic use , Carmustine
11.
Phys Med ; 113: 102664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37573811

ABSTRACT

PURPOSE: To evaluate the applicability of TRS-483 output correction factors (CFs) for small-field output factors (OFs) using different multi-leaf collimators (MLC) and field-shaping types. METHODS: All measurements were performed on TrueBeam, TrueBeam STx, and Halcyon using 6 MV flattening filter-free energy. Four detectors, including CC01, CC04, microDiamond, and EDGE, were used. Nominal field sizes ranging from 1 × 1 to 4 × 4, and 10 × 10 cm2 were used to measure small-field OFs at source-to-axis distance of 100 cm with a 0° gantry angle in a 3D water phantom. Further, the field-shaping types were defined using jaw collimator or MLC (five different configurations). A field size of 10 × 10 cm2 was used as the reference for calculation of OFs obtained as ratio of detector readings (OFdet). The percentage difference and coefficient of variation of OFdet and OFdet corrected by applying CF were compared for each field size and configuration. RESULTS: For OFdet corrected by applying CF, the ranges of percentage difference and coefficient of variation in all configurations for ≥ 2 × 2 cm2 fields were reduced from 1.2-2.2 to 0.8-1.3 percentage points (%pt) and from 0.5-1.0 to 0.4-0.7%, respectively. For 1 × 1 cm2 field, the ranges of percentage difference and coefficient of variation were reduced from 3.3-5.7 to 1.2-2.2 %pt and from 2.2-3.7 to 0.8-1.1%, respectively. CONCLUSIONS: The CFs described in TRS-483 dosimetry protocol have broad applicability in reducing OF variations between detectors under different MLC and field-shaping types.


Subject(s)
Photons , Radiometry , Particle Accelerators , Phantoms, Imaging
12.
Rep Pract Oncol Radiother ; 28(2): 241-254, 2023.
Article in English | MEDLINE | ID: mdl-37456703

ABSTRACT

Background: Beam matching is widely used to ensure that linear accelerators used in radiotherapy have equal dosimetry characteristics. Small-field output factors (OF) were measured using different detectors infour beam-matched linear accelerators and the measured OFs were compared with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Materials and methods: Three Elekta Versa HDTM and one Elekta InfinityTMlinear accelerators with photon energies of 6 MV flattening filter (FF), 10 MVFF, 6 MV flattening filter free (FFF) and 10 MVFFF were used in this study. All the Linac'swere beam-matched, Dosimetry beam data were ± 1% compare with Reference Linac. Ten different type of detectors (four ionizationchambers and six diode detectors) were used for small-field OF measurements. The OFs were measured for field sizes of 1 × 1 to 10 × 10 cm2, and normalized to 10 × 10 cm2 field size. The uncorrected and corrected OFs were calculated from these measurements. The corrected OF was compare with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Results: The small-field corrected and Uncorrected OF variations among the linear accelerators was within 1% for all energies and detectors. An increase in field size led to a reduction in the difference between OFs among the detectors, which was the case for all energies. The RSD values decreased with increasing field size. The TRS 483 provided Detector-specificoutput-correction factor (OCF) reduced uncertainty in small-field measurements. Conclusion: It is necessary to implement the OF-correction of small fields in a TPS. Special care must be taken to incorporate the corrected small-field OF in a TPS.

13.
Appl Radiat Isot ; 192: 110576, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36473319

ABSTRACT

The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.


Subject(s)
Radiosurgery , Robotic Surgical Procedures , Radiosurgery/methods , Polymers , Monte Carlo Method , Diamond , Radiometry/methods , Photons/therapeutic use
14.
J Appl Clin Med Phys ; 24(1): e13877, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36585844

ABSTRACT

PURPOSE: To investigate the necessity of extending the output factor table (OF Table) of the Varian EclipseTM Treatment Planning System for small field stereotactic radiosurgery (SRS) and stereotactic body radiosurgery (SBRT) treatments. METHODS: A new AcurosXB 15.6 beam model was created in the Eclipse Beam Configuration, which is identical to the one that has been used in the clinic with a default 3 × 3 cm to 40 × 40 cm OF Table, except the OF Table in the new model was extended to cover the range from 1 × 1 cm to 40 × 40 cm. 80 small square and rectangular output factors were measured on a Varian TrueBeam utilizing a Standard Imaging Exradin W2-1×1 scintillator detector, inside a PTW BeamScan water tank with 95 cm SSD at 5 cm depth. Cerenkov contamination was corrected using a rectangular field method (2 cm × 15 cm field). Nine Radiosurgery plans with primary jaw setting ranging from 0.7 cm to 2.0 cm were evaluated by both beam models. The monitor unit (MU) differences between the two beam models were calculated for identical 3-dimensional (3D) absolute dose distributions. Output factors, measured versus Eclipse calculated, were compared down to 0.5 × 0.5 cm primary jaw setting. RESULTS: For the 6FFF beam, the difference between the two beam models was ∼ 6% for 1 × 1 cm jaw settings and 4% at 1.5 × 1.5 cm, with the extended OF Table requiring higher MUs for the same dose prescription and same 3-dimensional isodose distribution. For the 6MV beam, the corresponding difference is ∼7.5% for 1 × 1 cm, 5% for 1.5 × 1.5 cm, and 3% for 2 × 2 cm jaw settings, with the extended OF Table requiring higher MUs. For jaw settings smaller than 1 × 1 cm, measured dose can be considerably smaller than Eclipse predicted dose, even with the OF Table extension. This is reflected by the fact that the output factor for 0.5 × 0.5 cm, calculated via Eclipse external beam, was more than 30% greater than that measured for both 6FFF and 6MV beams. CONCLUSIONS: Eclipse does a satisfactory job for primary jaw sizes down to 2 cm. For jaw settings smaller than 1.5 cm, the OF Table in Eclipse should be extended to improve the dose calculation accuracy.


Subject(s)
Radiosurgery , Humans , Radiosurgery/methods , Algorithms , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Water , Radiometry , Radiotherapy Dosage
15.
Phys Med ; 104: 167-173, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36463581

ABSTRACT

PURPOSE: This Technical Note validates previously published data about the dosimetry of the electron beams produced by a mobile accelerator dedicated for intraoperative radiation therapy (IORT). The evaluation of the directional response of a PTW microDiamond detector is presented together with a detailed analysis of the output factors (OFs) for bevelled applicators. METHODS: The OFs of the 6, 8, 10 and 12 MeV electron beams produced by a light intraoperative accelerator (LIAC, SIT, Italy) were measured in a commercial water phantom using the microDiamond. A set of flat and bevelled applicators with sizes ranging from 4 to 10 cm was characterized. For bevelled applicators, a correction for the angular dependence of the microDiamond was calculated using a home-made spherical phantom. Correction factors were obtained through measurements performed rotating the accelerator treatment head at 0°, 15°, 30° and 45°. RESULTS: For flat applicators, the average deviation between measured and simulated OFs was (-1.1 ± 0.7)%. The microDiamond showed a higher angular dependence for the 6 MeV beam (∼8% for angles up to 45°, range 92 % ÷ 100 %), while the variations for 8, 10 and 12 MeV beams were âˆ¼ 4 % (range 97 % ÷ 101 %). Correcting for this dependence, the average deviation of the OFs for bevelled applicators was (-0.9 ± 1.6)%. CONCLUSIONS: The presented results were in very good agreement with those reported in literature. Very similar deviations were found between flat and bevelled applicators confirming the suitability of our method to determine the angular dependence correction factors of the microDiamond detector.


Subject(s)
Intraoperative Period , Monte Carlo Method , Radiotherapy , Italy , Film Dosimetry , Humans
16.
Phys Med Biol ; 67(15)2022 07 27.
Article in English | MEDLINE | ID: mdl-35803256

ABSTRACT

Small field dosimetry is significantly different from the dosimetry of broad beams due to loss of electron side scatter equilibrium, source occlusion, and effects related to the choice of detector. However, use of small fields is increasing with the increase in indications for intensity-modulated radiation therapy and stereotactic body radiation therapy, and thus the need for accurate dosimetry is ever more important. Here we propose to leverage machine learning (ML) strategies to reduce the uncertainties and increase the accuracy in determining small field output factors (OFs). Linac OFs from a Varian TrueBeam STx were calculated either by the treatment planning system (TPS) or measured with a W1 scintillator detector at various multi-leaf collimator (MLC) positions, jaw positions, and with and without contribution from leaf-end transmission. The fields were defined by the MLCs with the jaws at various positions. Field sizes between 5 and 100 mm were evaluated. Separate ML regression models were generated based on the TPS calculated or the measured datasets. Accurate predictions of small field OFs at different field sizes (FSs) were achieved independent of jaw and MLC position. A mean and maximum % relative error of 0.38 ± 0.39% and 3.62%, respectively, for the best-performing models based on the measured datasets were found. The prediction accuracy was independent of contribution from leaf-end transmission. Several ML models for predicting small field OFs were generated, validated, and tested. Incorporating these models into the dose calculation workflow could greatly increase the accuracy and robustness of dose calculations for any radiotherapy delivery technique that relies heavily on small fields.


Subject(s)
Radiometry , Radiotherapy Planning, Computer-Assisted , Machine Learning , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty
17.
J Med Phys ; 47(1): 65-72, 2022.
Article in English | MEDLINE | ID: mdl-35548030

ABSTRACT

Background: The experimental determination of relative output factors presents the greatest challenge, especially for small fields with different detectors. The aim of this study is to evaluate the influence of jaw positions on small-field output factors for the fields defined by micro-multileaf collimator and circular cones with different detectors. Materials and Methods: The stereotactic output factors were measured on Primus linear accelerator with BrainLab micro-multileaf collimator (mMLC) and circular cones as add-on tertiary collimators. Square field sizes ranging from 0.6 cm × 0.6 cm to 9.8 cm × 9.8 cm and circular fields of diameter ranging from 1.0 cm to 4.0 cm were defined by mMLC and circular cones, respectively. The influence of jaw position on output factor was assessed for different geometric configurations with three different detectors. Results: The values obtained with PinPoint ion chamber were consistent with microDiamond detector for fields greater than 24 mm × 24 mm, but an underestimation of 23.9% was noticed in 6 mm x 6 mm field size. For the mMLC defined field size of 6 mm × 6 mm, when the X-Y jaw was moved from 8 mm × 8 mm to 80 mm × 80 mm, an increase in the output by a factor of 1.7 was observed with both microDiamond and stereotactic radiosurgery diode, whereas an increase in output by a factor of 1.9 was noticed with PinPoint ion chamber. Conclusion: Output factors obtained with different detectors show high differences in the smallest field size for all collimating systems. This study confirms that the position of X and Y jaw above the tertiary collimator significantly influences the small-field output factor.

18.
Med Phys ; 49(6): 4043-4055, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35344220

ABSTRACT

PURPOSE: The equivalent square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings, for example, light field settings. METHODS: One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS: The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. For Elekta Agility machine ES based on 4A/P < Sclin and for the VarianTrueBeam  4A/P > Sclin for square fields. Our measured data show that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4%, which is close to measurement uncertainty (±3%), but for small fields (< 10 mm), the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION: The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine-, detector- and user-dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector, and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine.


Subject(s)
Particle Accelerators , Radiometry , Radiometry/methods , Uncertainty
19.
Technol Cancer Res Treat ; 21: 15330338211073432, 2022.
Article in English | MEDLINE | ID: mdl-35119327

ABSTRACT

Purpose: The aim of this study is to measure the output factor (OF) and profile of surface dose in regular and small radiation therapy fields using Cherenkov imaging (CI). Methods: A medical linear accelerator (linac) was employed to generate radiation fields, including regular open photon field (ROPF), regular wedge photon field (RWPF), regular electron field (REF) and small photon field (SPF). The photon beams consisted of two filter modes including flattening filter (FF) and flattening filter free (FFF). All fields were delivered to a solid water phantom. Cherenkov light was captured using a charge-coupled device system during phantom irradiation. The OF and profile of surface dose measured by CI were compared with those determined by film measurement, ionization chamber measurement and treatment planning system calculation in order to examine the feasibility of measuring surface dose OF and profile using CI. Results: The discrepancy between surface dose OF measured by CI and that determined by other methods is less than 6% in ROPFs with size less than 10 × 10 cm2, REFs with size less than 10 × 10 cm2, and SPFs except for 1 × 1 cm2 field. In the flat profile region, the discrepancy between surface dose profile measured by CI and that determined by other methods is less than 4% in REFs and less than 3% in ROPFs, RWPFs, and SPFs except for 1 × 1 cm2 field. The discrepancy of the surface dose profile is in compliance with the recommendation by IAEA TRS 430 reports. The discrepancy between field width measured by CI and that determined by film measurement is equal to or less than 2 mm, which is within the tolerance recommend by the guidelines of linac quality assurance in regular open FF photon fields, SPFs, and REFs with cone size of 10 × 10 cm2 in area. Conclusion: CI can be used to quantitatively measure the OF and profile of surface dose. It is feasible to use CI to measure the surface dose profile and field width in regular open FF photon fields and SPFs except for 1 × 1 cm2 field.


Subject(s)
Particle Accelerators , Photons , Electrons , Humans , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
20.
Med Phys ; 49(3): 1944-1954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35050516

ABSTRACT

PURPOSE: Scintillation detectors were 3D printed based on a gamma knife (GK) dose distribution to calculate the volume averaging effect. The collimator output factors were measured using isodose-shaped scintillators (ISSs) and compared with those of a micro-diamond detector and previous reports. METHODS: An absorbed dose distribution in a spherical dosimetry phantom with a radius of 8 cm was obtained from GK treatment planning software (Leksell GammaPlan [LGP], Elekta AB, Stockholm, Sweden). Two types of ISSs were fabricated to fit the 97.2% (ISS-1) and 95.6% (ISS-2) isodose surfaces. The volume averaging correction factors were obtained by dividing the absorbed dose to water in the central voxel (CV) by that in the ISS. The correction effect due to the difference between the ISS and water was calculated by Monte Carlo simulations. Ten ISS detectors, five of each type, were used to measure the output factors of the 4- and 8-mm collimators of a GK Icon to assess system consistency. The output factors of seven GKs were measured using two ISS detectors, one of each type, and a PTW T60019 (PTW, Freiburg, Germany) micro-diamond detector. RESULTS: The detector output ratios (DORs) measured using the five ISSs of each type were consistent, with standard uncertainties less than 0.2%. In the 4-mm field, the volume averaging correction factor ratios were 1.018 and 1.026, and the output factors after all corrections were 0.827 (0.006) and 0.825 (0.006) for ISS-1 and ISS-2, respectively. In the 8-mm field, the volume averaging correction factor ratios were 1.000 for both ISS types, and the output factors were 0.898 (0.003) and 0.900 (0.003) for ISS-1 and ISS-2, respectively. The ISS detectors could measure the output factors of a GK with uncertainties comparable to that of the PTW 60019 detector. The output factors of all detectors decreased with the dose rate. CONCLUSION: The volume averaging effect of an ISS developed in-house could be calculated using known dose distributions. The collimator output factors of the GK Perfexion/Icon models measured using ISS detectors were consistent with those of a commercial synthetic micro-diamond detector and recent studies.


Subject(s)
Radiosurgery , Feasibility Studies , Monte Carlo Method , Phantoms, Imaging , Radiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...