Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 402: 130763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692377

ABSTRACT

The fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization. Its applicability was evaluated to the sustainable production of cellobionic acid (CBA), a potential pharmaceutical and cosmetic ingredient rarely commercialized. Dissolving pulp was used as a disaccharide source for MtCDHB. Initially, recombinant exoglucanases (MtCBHI and MtCBHII) from T. thermophilus hydrolyzed the dissolving pulp, resulting in 87% cellobiose yield, which was subsequently converted into CBA by MtCDHB, achieving a 66% CBA yield after 24 h. These findings highlight the potential of MtCDHB as a novel approach to obtaining CBA through the bioconversion of a plant-based source.


Subject(s)
Carbohydrate Dehydrogenases , Recombinant Proteins , Carbohydrate Dehydrogenases/metabolism , Recombinant Proteins/metabolism , Hydrogen-Ion Concentration , Disaccharides/biosynthesis , Disaccharides/metabolism , Temperature , Cellobiose/metabolism , Sordariales/enzymology , Hydrolysis , Eurotiales/enzymology
2.
Heliyon ; 8(8): e09938, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35965982

ABSTRACT

Excessive use of herbicides decreases soil biodiversity and fertility. The literature on the xenobiotic response by microorganisms is focused on herbicide biodegradation as a selective event. Non-degradation systems independent of selection could allow the survival of tolerant bacteria in contaminated environments, impacting xenobiotic turnover and, consequently, bioremediation strategies. However, it is uncertain whether the response based on these systems requires selective pressure to be effective. The objective here was to analyze non-degradation phenotypes, enzymatic and structural response systems, of Pseudomonas fluorescens CMA-55 strain, already investigated the production pattern of quorum sensing molecules in response to glyphosate, not present at the isolation site. One mode of response was associated with decrease in membrane permeability and effective antioxidative response for 0-2.30 mM glyphosate, at the mid-log growing phase, with higher activities of Mn-SOD, KatA, and KatB, and presence of fatty acids as nonadecylic acid, margaric and lauric acid. The second response system was characterized by lower antioxidative enzymes activity, presence of KatC isoform, and pelargonic, capric, myristic, stearic, palmitoleic and palmitic acid as principal fatty acids, allowing the strain to face stressful conditions in 9.20-11.50 mM glyphosate at the stationary phase. Therefore, the bacterial strain could modify the fatty acid composition and the permeability of membranes in two response modes according to the herbicide concentration, even glyphosate was not previously selective for P. fluorescens, featuring a generalist system based on physiological plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL