Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Genes Cells ; 29(1): 63-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985134

ABSTRACT

The hydrogen peroxide (H2 O2 )-producing NADPH oxidase Nox4, forming a heterodimer with p22phox , is expressed in a variety of cells including those in the heart to mediate adaptive responses to cellular stresses such as hypoxia. Since Nox4 is constitutively active, H2 O2 production is controlled by its protein abundance. Hypoxia-induced Nox4 expression is observed in various types of cells and generally thought to be regulated at the transcriptional level. Here we show that hypoxia upregulates the Nox4 protein level and Nox4-catalyzed H2 O2 production without increasing the Nox4 mRNA in rat H9c2 cardiomyocytes. In these cells, the Nox4 protein is stabilized under hypoxic conditions in a manner dependent on the presence of p22phox . Cell treatment with the proteasome inhibitor MG132 results in a marked decrease of the Nox4 protein under both normoxic and hypoxic conditions, indicating that the proteasome pathway does not play a major role in Nox4 degradation. The decrease is partially restored by the autophagy inhibitor 3-methyladenine. Furthermore, the Nox4 protein level is upregulated by the lysosome inhibitors bafilomycin A1 and chloroquine. Thus, in cardiomyocytes, Nox4 appears to be degraded via an autophagy-related pathway, and its suppression by hypoxia likely stabilizes Nox4, leading to upregulation of Nox4-catalyzed H2 O2 production.


Subject(s)
Myocytes, Cardiac , Oxidoreductases , Rats , Animals , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Hypoxia , Autophagy , Reactive Oxygen Species/metabolism
2.
Antioxid Redox Signal ; 39(13-15): 890-903, 2023 11.
Article in English | MEDLINE | ID: mdl-37470216

ABSTRACT

Aims: The goal of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-produced reactive oxygen species (ROS) enhance brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Results: Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional phosphate and tensin homolog (PTEN), but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream protein kinase B (Akt) activation. Radiation also promoted ROS production via NOX, which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. Innovation: While other studies have implicated NOX function in GBM models, this study demonstrates NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-nonfunctional systems, and provides a potential, patient-specific therapeutic opportunity. Conclusion: This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy. Antioxid. Redox Signal. 39, 890-903.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , NADP/metabolism , Tensins , Reactive Oxygen Species/metabolism , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/pathology , Phosphates , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Hypoxia
3.
Microbiol Immunol ; 67(4): 194-200, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36606663

ABSTRACT

Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22phox is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22phox missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22phox . Using a reconstitution system, it was found that p22phox expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22phox binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22phox and Nox2.


Subject(s)
NADPH Oxidases , Cricetulus , Animals , Cell Line , Humans , NADPH Oxidases/chemistry , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Mutation, Missense , NADPH Oxidase 2/metabolism
4.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626553

ABSTRACT

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Subject(s)
Monocytes , NADPH Oxidases , rho-Associated Kinases , Humans , Amino Acids , Monocytes/metabolism , NADPH Oxidases/metabolism , Phosphoproteins/metabolism , Reactive Oxygen Species , rho-Associated Kinases/metabolism
5.
Front Physiol ; 13: 978378, 2022.
Article in English | MEDLINE | ID: mdl-36467706

ABSTRACT

The vascular endothelium plays a pivotal role in the maintenance of vascular homeostasis, mediated by vasoactive molecules produced by endothelial cells. The balance between vasoconstrictor and vasodilator biomolecules is what guarantees this equilibrium. Therefore, an increase in the bioavailability of vasoconstrictors along with a reduction in vasodilators may indicate a condition known as endothelial dysfunction. Endothelial dysfunction is marked by an inflammatory process and reduced activity of vasoprotective enzymes, being characterized by some factors like the reduction of the bioavailability of nitric oxide (NO) and increase in the production of reactive oxygen species (ROS), pro-inflammatory and vasoconstrictor molecules. This condition is a predictive marker of several cardiovascular diseases (e.g., atherosclerosis, hypertension, and diabetes). Research is affected by the scarcity of suitable in vitro models that simulate endothelial dysfunction. The goal of this study was to induce an in vitro condition to mimic endothelial dysfunction by inhibiting NO synthesis in cells. Thymus-derived endothelial cells (tEnd.1) were treated with different concentrations of L-NAME (from 1 to 1,000 µM) for different times (12, 24, 48, 72, 96, and 120 h without and with retreatment every 24 h). Cell viability, nitrite concentration, p22phox, NOX2, NOX4, IL-6, and ACE genes expression and lipid peroxidation were evaluated. The results indicate that the treatment with 100 µM L-NAME for 72 h without retreatment reduced NO concentration and NOX4 gene expression while increasing ACE expression, thus mimicking reduced vascular protection and possibly increased vasoconstriction. On the other hand, treatment with 100 µM L-NAME for 96 h with retreatment reduced the concentration of NO and the expression of the p22phox gene while increasing the expression of the IL-6 and ACE genes, mimicking the increase in inflammation and vasoconstriction parameters. Based on these results, we thus propose that both 100 µM L-NAME for 72 h without retreatment and 100 µM L-NAME for 96 h with retreatment may be used as models for in vitro endothelial dysfunction according to the purpose of the study to be conducted.

6.
Redox Biol ; 56: 102479, 2022 10.
Article in English | MEDLINE | ID: mdl-36122532

ABSTRACT

The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1-4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1.


Subject(s)
Granulomatous Disease, Chronic , Membrane Proteins , NADPH Oxidases , Humans , Membrane Proteins/metabolism , Mutant Proteins , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Serine , Sulfhydryl Compounds
7.
Methods Mol Biol ; 2525: 123-137, 2022.
Article in English | MEDLINE | ID: mdl-35836064

ABSTRACT

The proteomics field has undergone tremendous development with the introduction of many innovative methods for the identification and characterization of protein-protein interactions (PPIs). Sensitive and quantitative protein association-based techniques represent a versatile tool to probe the architecture of receptor complexes and receptor-ligand interactions and expand the drug discovery toolbox by facilitating high-throughput screening (HTS) approaches. These novel methodologies will be highly enabling for interrogation of structural determinants required for the activity of multimeric membrane-bound enzymes with unresolved crystal structure and for HTS assay development focused on unique characteristics of complex assembly instead of common catalytic features, thereby increasing specificity. We describe here an example of a binary luciferase reporter assay (NanoBiT®) to quantitatively assess the heterodimerization of the catalytically active NADPH oxidase 4 (NOX4) enzyme complex. The catalytic subunit NOX4 requires association with the protein p22phox for stabilization and enzymatic activity, but the precise manner by which these two membrane-bound proteins interact to facilitate hydrogen peroxide (H2O2) generation is currently unknown. The NanoBiT complementation reporter quantitatively determined the accurate, reduced, or failed complex assembly, which can then be confirmed by determining H2O2 release, protein expression, and heterodimer trafficking. Multimeric complex formation differs between NOX enzyme isoforms, facilitating isoform-specific, PPI-based drug screening in the future.


Subject(s)
Hydrogen Peroxide , NADPH Oxidases , Biological Assay , Cell Membrane/metabolism , Hydrogen Peroxide/metabolism , Membrane Proteins/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism
8.
J Clin Immunol ; 42(5): 986-999, 2022 07.
Article in English | MEDLINE | ID: mdl-35344128

ABSTRACT

PURPOSE: This is a functional characterization of a novel CYBA variant associated with normal DHR flow cytometry. Chronic granulomatous disease (CGD) is an inborn error of immunity characterized by recurrent bacterial and fungal infections and dysregulated inflammatory responses due to defective phagocytic cell function leading to the formation of granulomas. CGD patients have pathogenic variants in any of the five components of the phagocytic NADPH oxidase, which transfers electrons through the phagosomal membrane and produces superoxide upon bacterial uptake. Here, we report a pediatric female patient with a novel homozygous missense variant (c.293C > T, p.(Ser98Leu)) in CYBA, encoding the p22phox protein, associated with autosomal recessive CGD. METHODS AND RESULTS: The patient presented with severe recurrent pneumonia. Specific pathogens identified included Burkholderia and Serratia species suggesting neutrophil functional abnormalities; however, the dihydrorhodamine-1,2,3 (DHR) flow cytometric and cytochrome c reduction assays for neutrophil respiratory burst fell within the low side of the normal range. Western blot and flow cytometric analysis of individual NADPH oxidase components revealed reduced levels of p22phox and gp91phoxphox proteins. The pathological consequence of the p.Ser98Leu variant was further evaluated in heterologous expression systems, which confirmed reduced p22phox protein stability and oxidase activity. CONCLUSIONS: Although this patient did not exhibit all the classic features of CGD, such as granulomas and skin infections, she had recurrent pneumonias with oxidant-sensitive pathognomonic organisms, resulting in appropriate targeted CGD testing. This case emphasizes the need to contextually interpret laboratory data, especially using clinical findings to direct additional assessments including genetic analysis.


Subject(s)
Granulomatous Disease, Chronic , Child , Female , Flow Cytometry , Granulomatous Disease, Chronic/complications , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Humans , Mutation/genetics , NADPH Oxidase 2/genetics , NADPH Oxidases/genetics , Phagocytes
9.
Pharmacol Res ; 176: 106084, 2022 02.
Article in English | MEDLINE | ID: mdl-35051590

ABSTRACT

Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.


Subject(s)
Connexins/metabolism , Diabetes Mellitus, Experimental/metabolism , Epithelial-Mesenchymal Transition , Animals , Cell Line , Connexins/genetics , HEK293 Cells , Humans , Kidney Tubules/metabolism , Male , Mice, Inbred C57BL , NADPH Oxidase 4/metabolism , Rats , Gap Junction beta-1 Protein
10.
Antioxidants (Basel) ; 10(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34943057

ABSTRACT

The run/cysteine-rich-domain-containing Beclin1-interacting autophagy protein (Rubicon) is essential for the regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by interacting with p22phox to trigger the production of reactive oxygen species (ROS) in immune cells. In a previous study, we demonstrated that the interaction of Rubicon with p22phox increases cellular ROS levels. The correlation between Rubicon and mitochondrial ROS (mtROS) is poorly understood. Here, we report that Rubicon interacts with p22phox in the outer mitochondrial membrane in macrophages and patients with human ulcerative colitis. Upon lipopolysaccharide (LPS) activation, the binding of Rubicon to p22phox was elevated, and increased not only cellular ROS levels but also mtROS, with an impairment of mitochondrial complex III and mitochondrial biogenesis in macrophages. Furthermore, increased Rubicon decreases mitochondrial metabolic flux in macrophages. Mito-TIPTP, which is a p22phox inhibitor containing a mitochondrial translocation signal, enhances mitochondrial function by inhibiting the association between Rubicon and p22phox in LPS-primed bone-marrow-derived macrophages (BMDMs) treated with adenosine triphosphate (ATP) or dextran sulfate sodium (DSS). Remarkably, Mito-TIPTP exhibited a therapeutic effect by decreasing mtROS in DSS-induced acute or chronic colitis mouse models. Thus, our findings suggest that Mito-TIPTP is a potential therapeutic agent for colitis by inhibiting the interaction between Rubicon and p22phox to recover mitochondrial function.

11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(7): 855-861, 2021 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-34308593

ABSTRACT

OBJECTIVE: To investigate the role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia. METHODS: The skull tissue of newborn rats was cut into small pieces, and the osteoblasts were separated and purified by the tissue block adherent method and the differential adherent method. The first generation cells were harvested and identified by HE staining, Alizarin red staining, alkaline phosphatase (ALP) staining, and flow cytometry. A three-gas incubator was used to prepare a hypoxia model of osteoblasts. At 0, 3, 6, 12, and 24 hours of hypoxia, the expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ were detected by Western blot, and the level of reactive oxygen species (ROS) and cell apoptosis rate were detected by flow cytometry. And the time point of the highest level of ROS was selected as the hypoxia time point for subsequent experiments. The first generation osteoblasts were divided into normal group, si-p22phox hypoxia group, and si-NOX5 hypoxia group and subjected to corresponding transfection and hypoxia treatment. The inhibition efficiency of si-p22phox and si-NOX5 were detected by RT-PCR. Then the osteoblasts were divided into normal group, si-NC hypoxia group, si-p22phox hypoxia group, and si-NOX5 hypoxia group. After transfection and hypoxia treatment, Western blot was used to detect the expressions of p22phox, NOX5, autophagy-related proteins (LC3Ⅱ/Ⅰ, Beclin), and apoptosis-related proteins (Bcl-2, Bax), and flow cytometry was used to detect the cell apoptosis rate and level of ROS. The first generation osteoblasts were divided into a hypoxia group for 12 hours (hypoxia group) and a group that simultaneously inhibited si-p22phox and si-NOX5 and hypoxia for 12 hours (inhibition+hypoxia group). The expressions of Beclin and Bax were observed by immunofluorescence staining after the corresponding treatment. RESULTS: After identification, the isolated cells were osteoblasts. After hypoxia treatment, the relative expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ proteins and the apoptosis rate of osteoblasts gradually increased ( P<0.05), and the level of ROS also significantly increased ( P<0.05) and reached the peak value at 12 hours. The 12-hour hypoxia model was selected for subsequent experiments. Silencing the p22phox gene did not affect the expression of NOX5, and silencing the NOX5 gene did not affect the expression of p22phox. Compared with hypoxia treatment, the relative expressions of LC3Ⅱ/Ⅰ, Beclin, and Bax proteins after inhibiting the expression of p22phox or NOX5 gene significantly decreased ( P<0.05), the relative expression of Bcl-2 protein significantly increased ( P<0.05), the cell apoptosis rate and level of ROS also significantly decreased ( P<0.05). After silencing the expressions of p22phox and NOX5 genes at the same time, the immunofluorescence staining showed that the fluorescence of Beclin and Bax were weak. CONCLUSION: Inhibiting the expressions of p22phox and NOX5 genes can reduce the level of ROS in osteoblasts under hypoxia-induced conditions, and at the same time reduce autophagy and apoptosis, especially attenuate the excessive apoptosis of cells in the early to late stages, and strengthen the hypoxic osteoblasts proliferation.


Subject(s)
Apoptosis , Autophagy , Animals , Hypoxia , Osteoblasts , Rats , Transfection
12.
J Cancer ; 12(14): 4277-4287, 2021.
Article in English | MEDLINE | ID: mdl-34093828

ABSTRACT

The aim of this study was to investigate the biological role and molecular mechanism of p22phox in epithelial ovarian cancer. Immunohistochemistry was employed to determine the p22phox expression level in epithelial ovarian cancer tissues. The effects of p22phox on epithelial ovarian cancer cell proliferation, tumorigenesis, and chemosensitivity were evaluated by CCK-8, EdU assay, colony formation and apoptosis assays in vitro and by mouse experiments in vivo. Immunoprecipitation analyses were utilized to explore the potential mechanisms of p22phox mediated downstream signaling, and RT-PCR and western blot were used to confirm the relevance. P22phox expression could be detected in epithelial ovarian cancer tissues and normal fallopian epithelial cells. Silencing p22phox suppressed epithelial ovarian cancer cell proliferation and colony formation capacity in vitro, and inhibited the tumor growth in nude mice bearing the A2780 xenograft in vivo. Mechanistic investigations showed that p22phox regulated proteasome ubiquitination and subsequent proteasome-dependent degradation of p53 in A2780 and U87 cells in vitro. Furthermore, knockdown of p22phox significantly increased the chemosensitivity of A2780 cells to cisplatin or paclitaxel. These results suggested that p22phox as a pivotal oncogene during epithelial ovarian cancer carcinogenesis and p22phox inhibition might be a potential therapeutic strategy for epithelial ovarian cancer.

13.
Neurobiol Dis ; 156: 105396, 2021 08.
Article in English | MEDLINE | ID: mdl-34015492

ABSTRACT

Cerebrovascular remodeling is the most common cause of hypertension and stroke. Ubiquitin E3 ligase RING finger protein 34 (RNF34) is suggested to be associated with the development of multiple neurological diseases. However, the importance of RNF34 in cerebrovascular remodeling and hypertension is poorly understood. Herein, we used mice with a global RNF34 knockout as well as RNF34 floxed mice to delete RNF34 in endothelial cells and smooth muscle cells (SMCs). Our results showed that global RNF34 knockout mice substantially promoted angiotensin II (AngII)-induced middle cerebral artery (MCA) remodeling, hypertension, and neurological dysfunction. Endothelial cell RNF34 did not regulate the development of hypertension. Rather, SMC RNF34 expression is a critical regulator of hypertension and MCA remodeling. Loss of RNF34 enhanced AngII-induced mouse brain vascular SMCs (MBVSMCs) proliferation, migration and invasion. Furthermore, MCA and MBVSMCs from SMC RNF34-deficient mice showed increased superoxide anion and reactive oxygen species (ROS) generation as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, but exhibited no marked effect on mitochondria-derived ROS. Knockout of RNF34 promoted p22phox expression, leading to increased binding of p22phox/p47phox and p22phox/NOX2, and eventually NADPH oxidase complex formation. Immunoprecipitation assay identified that RNF34 interacted with p22phox. RNF34 deletion increased p22phox protein stability by inhibiting ubiquitin-mediated degradation. Blockade of NADPH oxidase activity or knockdown of p22phox significantly abolished the effects of RNF34 deletion on cerebrovascular remodeling and hypertension. Collectively, our study demonstrates that SMC RNF34 deficiency promotes cerebrovascular SMC hyperplasia and remodeling by increased NADPH-derived ROS generation via reducing p22phox ubiquitin-dependent degradation.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Cerebrovascular Circulation/physiology , Hypertension/metabolism , NADP/biosynthesis , Reactive Oxygen Species/metabolism , Vascular Remodeling/physiology , Animals , Carrier Proteins/genetics , Cells, Cultured , HEK293 Cells , Humans , Hypertension/pathology , Mice , Mice, 129 Strain , Mice, Knockout , Mice, Transgenic , Oxidative Stress/physiology
14.
Ann Hepatol ; 25: 100339, 2021.
Article in English | MEDLINE | ID: mdl-33675999

ABSTRACT

INTRODUCTION AND OBJECTIVES: It is well-known that signaling mediated by the hepatocyte growth factor (HGF) and its receptor c-Met in the liver is involved in the control of cellular redox status and oxidative stress, particularly through its ability to induce hepatoprotective gene expression by activating survival pathways in hepatocytes. It has been reported that HGF can regulate the expression of some members of the NADPH oxidase family in liver cells, particularly the catalytic subunits and p22phox. In the present work we were focused to characterize the mechanism of regulation of p22phox by HGF and its receptor c-Met in primary mouse hepatocytes as a key determinant for cellular redox regulation. MATERIALS AND METHODS: Primary mouse hepatocytes were treated with HGF (50 ng/mL) at different times. cyba expression (gene encoding p22phox) or protein content were addressed by real time RT-PCR, Western blot or immunofluorescence. Protein interactions were explored by immunoprecipitation and FRET analysis. RESULTS: Our results provided mechanistic information supporting the transcriptional repression of cyba induced by HGF in a mechanism dependent of NF-κB activity. We identified a post-translational regulation mechanism directed by p22phox degradation by proteasome 26S, and a second mechanism mediated by p22phox sequestration by c-Met in plasma membrane. CONCLUSION: Our data clearly show that HGF/c-Met exerts regulation of the NADPH oxidase by a wide-range of molecular mechanisms. NADPH oxidase-derived reactive oxygen species regulated by HGF/c-Met represents one of the main mechanisms of signal transduction elicited by this growth factor.


Subject(s)
Cytochrome b Group/physiology , Hepatocyte Growth Factor/physiology , Hepatocytes/metabolism , NADPH Oxidases/physiology , Proto-Oncogene Proteins c-met/physiology , Signal Transduction/physiology , Animals , Cell Culture Techniques , Hepatocytes/drug effects , Male , Mice , Mice, Inbred C57BL , Protein Biosynthesis , Transcription, Genetic
15.
Free Radic Res ; 55(9-10): 996-1004, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35012414

ABSTRACT

NADPH oxidase (Nox) 4 produces H2O2 by forming a heterodimer with p22phox and is involved in hemangioendothelioma development through monocyte chemoattractant protein-1 (MCP-1) upregulation. Here, we show that Nox4 protein levels were maintained by p22phox in hemangioendothelioma cells and Nox4 protein stability was dependent on p22phox coexpression. Conversely, the degradation of Nox4 monomer was enhanced by p22phox knockdown. Under hypoxic conditions in hemangioendothelioma cells, p22phox was downregulated at the mRNA and protein levels. Downregulation of p22phox protein resulted in the enhanced degradation of Nox4 protein in hypoxia-treated hemangioendothelioma cells. In contrast, Nox2, a Nox isoform, was not altered at the protein level under hypoxic conditions. Nox2 exhibited a higher affinity for p22phox compared with Nox4, suggesting that when coexpressed with Nox4 in the same cells, Nox2 acts as a competitor. Nox2 knockdown restored Nox4 protein levels partially reduced by hypoxic treatment. Thus, Nox4 protein levels were attenuated in hypoxia-treated cells resulting from p22phox depletion. MCP-1 secretion was decreased concurrently with hypoxia-induced Nox4 downregulation compared with that under normoxia.


Subject(s)
Hemangioendothelioma , NADPH Oxidases , Animals , Humans , Mice , Down-Regulation , Hydrogen Peroxide/metabolism , Hypoxia/genetics , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Protein Stability , Reactive Oxygen Species/metabolism
16.
Redox Biol ; 36: 101638, 2020 09.
Article in English | MEDLINE | ID: mdl-32863203

ABSTRACT

Increased pulmonary vascular permeability due to endothelial cell (EC) barrier dysfunction is a major pathological feature of acute respiratory distress syndrome/acute lung injury (ARDS/ALI), which is a devastating critical illness with high incidence and excessive mortality. Activation of NADPH oxidase (NOX) induces EC dysfunction via production of reactive oxygen species (ROS). However, the role(s) of NOX isoform(s), and their downstream signaling events, in the development of ARDS/ALI have remained unclear. Cecal Ligation Puncture (CLP) was used to induce preclinical septic ALI in wild-type mice and mice deficient in NOX2 or p47phox, or mice transfected of control siRNA, NOX1 or NOX4 siRNA in vivo. The survival rate of the CLP group at 24 h (26.6%, control siRNA treated) was substantially improved by NOX4 knockdown (52.9%). Mice lacking NOX2 or p47phox, however, had worse outcomes after CLP (survival rates at 0% and 8.3% respectively), whereas NOX1-silenced mice had similar survival rate (30%). NOX4 knockdown attenuated lung ROS production in septic mice, whereas NOX1 knockdown, NOX2 knockout, or p47phox knockout in mice had no effects. In addition, NOX4 knockdown attenuated redox-sensitive activation of the CaMKII/ERK1/2/MLCK pathway, and restored expression of EC tight junction proteins ZO-1 and Occludin to maintain EC barrier integrity. Correspondingly, NOX4 knockdown in cultured human lung microvascular ECs also reduced LPS-induced ROS production, CaMKII/ERK1/2/MLCK activation and EC barrier dysfunction. Scavenging superoxide in vitro and in vivo with TEMPO, or inhibiting CaMKII activation with KN93, had similar effects as NOX4 knockdown in preserving EC barrier dysfunction. In summary, we have identified a novel, selective and causal role of NOX4 (versus other NOX isoforms) in inducing lung EC barrier dysfunction and injury/mortality in a preclinical CLP-induced septic model, which involves redox-sensitive activation of CaMKII/ERK1/2/MLCK pathway. Targeting NOX4 may therefore prove to an innovative therapeutic option that is markedly effective in treating ALI/ARDS.


Subject(s)
Acute Lung Injury , Sepsis , Acute Lung Injury/genetics , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Endothelial Cells/metabolism , MAP Kinase Signaling System , Mice , NADPH Oxidase 4/genetics , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Oxidation-Reduction , Reactive Oxygen Species
17.
Molecules ; 25(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825798

ABSTRACT

Prolonged treatment with cisplatin (CDDP) frequently develops chemoresistance. We have previously shown that p22phox, an endoplasmic reticulum (ER) membrane protein, confers CDDP resistance by blocking CDDP nuclear entry in oral squamous cell carcinoma (OSCC) cells; however, the underlying mechanism remains unresolved. Using a fluorescent dye-labeled CDDP, here we show that CDDP can bind to p22phox in both cell-based and cell-free contexts. Subsequent detection of CDDP-peptide interaction by the Tris-Tricine-based electrophoresis revealed that GA-30, a synthetic peptide matching a region of the cytosolic domain of p22phox, could interact with CDDP. These results were further confirmed by liquid chromatography-mass spectrometry (LC-MS) analysis, from which MA-11, an 11-amino acid subdomain of the GA-30 domain, could largely account for the interaction. Amino acid substitutions at Cys50, Met65 and Met73, but not His72, significantly impaired the binding between CDDP and the GA-30 domain, thereby suggesting the potential CDDP-binding residues in p22phox protein. Consistently, the p22phox point mutations at Cys50, Met65 and Met73, but not His72, resensitized OSCC cells to CDDP-induced cytotoxicity and apoptosis. Finally, p22phox might have binding specificity for the platinum drugs, including CDDP, carboplatin and oxaliplatin. Together, we have not only identified p22phox as a novel CDDP-binding protein, but further highlighted the importance of such a drug-protein interaction in drug resistance.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Drug Resistance, Neoplasm/drug effects , Mouth Neoplasms/drug therapy , NADPH Oxidases/metabolism , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/metabolism , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Apoptosis , Carboplatin/administration & dosage , Carboplatin/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Cisplatin/administration & dosage , Cisplatin/metabolism , Endoplasmic Reticulum/metabolism , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , NADPH Oxidases/genetics , Oxaliplatin/administration & dosage , Oxaliplatin/metabolism , Tumor Cells, Cultured
18.
Redox Biol ; 34: 101536, 2020 07.
Article in English | MEDLINE | ID: mdl-32413743

ABSTRACT

Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.


Subject(s)
Heart Diseases , Hypertension, Pulmonary , Animals , Glucocorticoids , Humans , Hypertension, Pulmonary/chemically induced , Hypoxia-Inducible Factor 1 , Mice , NADPH Oxidases/genetics , Reactive Oxygen Species
19.
Int Forum Allergy Rhinol ; 10(5): 646-655, 2020 05.
Article in English | MEDLINE | ID: mdl-32052917

ABSTRACT

BACKGROUND: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces reactive oxygen species (ROS) involved in oxidative stress and signal transduction. Recent studies have suggested that NADPH oxidase is associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). The aim of this study was to detect the expression of NADPH oxidase subunits and 4-hydroxynonenal (4-HNE) in nasal polyp tissue and normal nasal mucosa, in order to explore the possible role played by NADPH oxidase in the pathogenesis of CRSwNP. METHODS: Thirteen patients with CRSwNP and 9 normal control subjects were selected to participate in this study, in which we evaluated the expression of different NADPH oxidase subunits (gp91phox , p67phox , p47phox , and p22phox ) in nasal polyp (NP) tissue and control mucosa by Western blotting and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence staining were used to detect expression of the p67phox subunit and 4-HNE in NP tissue and normal nasal mucosa. RESULTS: Western blot and real-time PCR results showed that p67phox expression was significantly increased in NP tissue when compared with its expression in control mucosa (p = 0.004). p67phox was expressed in the eosinophils and neutrophils found in NP tissue, but not in the macrophages. Additionally, the levels of 4-HNE expression were also significantly increased in NP tissue when compared with control mucosa (p = 0.001). CONCLUSION: The levels of p67phox messenger RNA (mRNA) and protein as well as 4-HNE were both upregulated in NP tissue, suggesting that p67phox and oxidative stress play roles in the pathogenesis of CRSwNP.


Subject(s)
NADPH Oxidases/metabolism , Nasal Polyps/metabolism , Rhinitis/metabolism , Sinusitis/metabolism , Adult , Aged , Aldehydes/metabolism , Chronic Disease , Eosinophils/metabolism , Female , Humans , Male , Middle Aged , Nasal Mucosa/metabolism , Nasal Polyps/pathology , Neutrophils/metabolism , Oxidative Stress , Phosphoproteins/metabolism , Rhinitis/pathology , Sinusitis/pathology
20.
J Clin Immunol ; 40(1): 191-202, 2020 01.
Article in English | MEDLINE | ID: mdl-31813112

ABSTRACT

PURPOSE: Chronic granulomatous disease (CGD) is an innate immune deficiency, primarily affecting the phagocytic compartment, and presenting with a diverse phenotypic spectrum ranging from severe childhood infections to monogenic inflammatory bowel disease. Dihydrorhodamine (DHR) flow cytometry is the standard diagnostic test for CGD, and correlates with NADPH oxidase activity. While there may be genotype correlation with the DHR flow pattern in some patients, in several others, there is no correlation. In such patients, assessment by flow cytometric evaluation of NADPH oxidase-specific (NOX) proteins provides a convenient and rapid means of genetic triage, though immunoblotting has long been used for this purpose. METHODS AND RESULTS: We describe the clinical utility of the NOX flow cytometry assay through assessment of X-linked and autosomal recessive CGD patients and their first-degree relatives. The assessment of specific NOX proteins was correlated with overall NADPH oxidase function (DHR flow), clinical phenotype and genotype. NOX-specific protein assessment is a valuable adjunct to DHR assessment and genotyping to classify and characterize CGD patients. CONCLUSIONS: The atypical clinical presentation of some CGD patients can make genotype-phenotype correlation with DHR flow data challenging. Genetic testing, while useful for confirmation of diagnosis, can take several weeks, and in some patients does not provide a conclusive answer. However, NADPH-oxidase-specific protein flow assessment offers a rapid alternative to identification of the underlying genetic defect in cellular subsets, and can be utilized as a reflex test to an abnormal DHR flow. Further, it can provide insight into correlation between oxidative burst relative to protein expression in granulocytes and monocytes.


Subject(s)
Granulomatous Disease, Chronic/genetics , NADPH Oxidases/genetics , Adolescent , Child , Child, Preschool , Female , Flow Cytometry/methods , Genotype , Granulocytes/metabolism , Humans , Immunologic Deficiency Syndromes/genetics , Infant , Male , Phenotype , Respiratory Burst/genetics , Triage/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...