Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Front Aging Neurosci ; 16: 1459134, 2024.
Article in English | MEDLINE | ID: mdl-39381137

ABSTRACT

Background: Neuroinflammation is widely recognized as a key factor in the pathogenesis of Alzheimer's disease (AD), alongside ß-amyloid deposition and the formation of neurofibrillary tangles. The NLR family pyrin domain containing 3 (NLRP3) inflammasome, part of the innate immune system, has been implicated in the neuropathology of both preclinical amyloid and tau transgenic models. Activation of the NLRP3 pathway involves an initial priming step, which increases the expression of Nlrp3 and interleukin (IL)-1ß, followed by the assembly of the NLRP3 inflammasome complex, comprising NLRP3, ASC, and caspase-1. This assembly leads to the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18. Additionally, the NLRP3 inflammasome induces Gasdermin D (GSDMD) cleavage, forming membrane pores through which IL-1ß and IL-18 are secreted. Inhibition of NLRP3 has been shown to enhance plaque clearance by modulating microglial activation. Furthermore, blocking NLRP3 in tau transgenic mice has been found to reduce tau phosphorylation by affecting the activity of certain tau kinases and phosphatases. Methods: In this study, organotypic brain slice cultures from P301S transgenic mice were treated with lipopolysaccharide (LPS) plus nigericin as a positive control or exposed to tau seeds (K18) to evaluate NLRP3 inflammasome activation. The effect of tau seeding on NLRP3 activity was further examined using Meso Scale Discovery (MSD) assays to measure IL1ß secretion levels in the presence and absence of NLRP3 inhibitors. The role of NLRP3 activity was investigated in full-body Nlrp3 knockout mice crossbred with the tau transgenic P301S model. Additionally, full-body and microglia-selective Gsdmd knockout mice were crossbred with P301S mice, and tau pathology and neurodegeneration were evaluated at early and late stages of the disease using immunohistochemistry and biochemical assays. Results: Activation of the NLRP3 pathway was observed in the mouse organotypic slice culture (OSC) model following stimulation with LPS and nigericin or exposure to tau seeds. However, Nlrp3 deficiency did not mitigate tauopathy or neurodegeneration in P301S mice in vivo, showing only a minor effect on plasma neurofilament (NF-L) levels. Consistently, Gsdmd deficiency did not alter tau pathology in P301S mice. Furthermore, neither full-body nor microglia-selective Gsdmd deletion had an impact on neuronal pathology or the release of pro-inflammatory cytokines. Conclusion: The absence of key components of the NLRP3 inflammasome pathway did not yield a beneficial effect on tau pathology or neurodegeneration in the preclinical Tau-P301S mouse model of AD. Nonetheless, organotypic slice cultures could serve as a valuable ex vivo mechanistic model for evaluating NLRP3 pathway activation and pharmacological inhibitors.

2.
J Inflamm (Lond) ; 21(1): 29, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107774

ABSTRACT

Mice transgenic for human P301S tau protein exhibit many characteristics of the human tauopathies, including the formation of abundant hyperphoshorylated tau filaments, the associated neuroinflammation and disease phenotype. However, the exact underpinning mechanisms are still not fully addressed that hinder our understanding of the tauopathy diseases and the development of possible therapeutic targets.Methods: In the current study, hippocampus from three disease time points (2, 4 and 6 months) of P301S mice were further characterized in comparison to the age and sex matched control wild type mice (WT) that do not express the transgene. Different spectrum of hippocampal dependent cognitive tests, biochemical and pathological analysis were conducted to understand the disease progression and the associated changes in each stage. Results: Cognitive impairment was manifested as early as 2 months age, prior to the identification of tau aggregation and phosphorylation by immunostaining. P301S mice manifested an increased pro-inflammatory related changes at mRNA transcription level (IL-1b and IL17A) with the progression of the disease and when compared to the WT mice of the same age. Among the identified genes in the current study, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) genes expression that is considered as the master regulator of an endogenous inducible defense system was significantly impaired in P301S mice by 4 and 6 months when compared to healthy WT controls. A data that was also supported by the immunostaining of the serial brain sections including the both brain stem and hippocampus. The current result is suggesting that the downregulation of Nrf2 gene and the impaired Nrf2 dependent anti-inflammatory mechanisms in P301S mice brain is possibly contributing -among other factors- in the neuroinflammation and tauopathy, and that modulation of Nrf2 signaling impairments can be further investigated as a promising potential therapeutic target for tauopathy.

3.
Proc Natl Acad Sci U S A ; 121(27): e2311831121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38941274

ABSTRACT

TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.


Subject(s)
Anoctamins , Neurons , Phosphatidylserines , Tauopathies , tau Proteins , Animals , Anoctamins/metabolism , Anoctamins/genetics , Phosphatidylserines/metabolism , Neurons/metabolism , Neurons/pathology , tau Proteins/metabolism , tau Proteins/genetics , Mice , Tauopathies/metabolism , Tauopathies/pathology , Humans , Microglia/metabolism , Microglia/pathology , Phosphorylation , Mice, Transgenic , Disease Models, Animal , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Brain/metabolism , Brain/pathology , Mice, Knockout
4.
J Cachexia Sarcopenia Muscle ; 15(4): 1358-1375, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38646816

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) impairs cognitive functions and peripheral systems, including skeletal muscles. The PS19 mouse, expressing the human tau P301S mutation, shows cognitive and muscular pathologies, reflecting the central and peripheral atrophy seen in AD. METHODS: We analysed skeletal muscle morphology and neuromuscular junction (NMJ) through immunohistochemistry and advanced image quantification. A factorial Analysis of Variance assessed muscle weight, NCAM expression, NMJ, myofibre type distribution, cross-sectional areas, expression of single or multiple myosin heavy-chain isoforms, and myofibre grouping in PS19 and wild type (WT) mice over their lifespan (1-12 months). RESULTS: Significant weight differences in extensor digitorum longus (EDL) and soleus muscles between WT and PS19 mice were noted by 7-8 months. For EDL muscle in females, WT weighed 0.0113 ± 0.0005 compared with PS19's 0.0071 ± 0.0008 (P < 0.05), and in males, WT was 0.0137 ± 0.0001 versus PS19's 0.0069 ± 0.0006 (P < 0.005). Similarly, soleus muscle showed significant differences; females (WT: 0.0084 ± 0.0004; PS19: 0.0057 ± 0.0005, P < 0.005) and males (WT: 0.0088 ± 0.0003; PS19: 0.0047 ± 0.0004, P < 0.0001). Analysis of the NMJ in PS19 mice revealed a marked reduction in myofibre innervation at 5 months, with further decline by 10 months. NMJ pre-terminals in PS19 mice became shorter and simpler by 5 months, showing a steep decline by 10 months. Genotype and age strongly influenced muscle NCAM immunoreactivity, denoting denervation as early as 5-6 months in EDL muscle Type II fibres, with earlier effects in soleus muscle Type I and II fibres at 3-4 months. Muscle denervation and subsequent myofibre atrophy were linked to a reduction in Type IIB fibres in the EDL muscle and Type IIA fibres in the soleus muscle, accompanied by an increase in hybrid fibres. The EDL muscle showed Type IIB fibre atrophy with WT females at 1505 ± 110 µm2 versus PS19's 1208 ± 94 µm2, and WT males at 1731 ± 185 µm2 versus PS19's 1227 ± 116 µm2. Similarly, the soleus muscle demonstrated Type IIA fibre atrophy from 5 to 6 months, with WT females at 1194 ± 52 µm2 versus PS19's 858 ± 62 µm2, and WT males at 1257 ± 43 µm2 versus PS19's 1030 ± 55 µm2. Atrophy also affected Type IIX, I + IIA, and IIA + IIX fibres in both muscles. The timeline for both myofibre and overall muscle atrophy in PS19 mice was consistent, indicating a simultaneous decline. CONCLUSIONS: Progressive and accelerated neurogenic sarcopenia may precede and potentially predict cognitive deficits observed in AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Memory Disorders , Mice, Transgenic , Muscle, Skeletal , Sarcopenia , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Mice , Sarcopenia/metabolism , Sarcopenia/pathology , Male , Female , Memory Disorders/etiology , Memory Disorders/metabolism , Humans , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Tauopathies/pathology , Tauopathies/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , tau Proteins/metabolism
5.
Front Aging Neurosci ; 16: 1409164, 2024.
Article in English | MEDLINE | ID: mdl-38659705

ABSTRACT

[This corrects the article DOI: 10.3389/fnagi.2024.1323563.].

6.
J Alzheimers Dis ; 98(3): 1121-1131, 2024.
Article in English | MEDLINE | ID: mdl-38489190

ABSTRACT

Background: The impairment of neural circuits controlling cognitive processes has been implicated in the pathophysiology of Alzheimer's disease and related disorders (ADRD). However, it is largely unclear what circuits are specifically changed in ADRD, particularly at the early stage. Objective: Our goal of this study is to reveal the functional changes in the circuit of entorhinal cortex (EC), an interface between neocortex and hippocampus, in AD. Methods: Electrophysiological, optogenetic and chemogenetic approaches were used to examine and manipulate entorhinal cortical circuits in amyloid-ß familial AD model (5×FAD) and tauopathy model (P301S Tau). Results: We found that, compared to wild-type mice, electrical stimulation of EC induced markedly smaller responses in subiculum (hippocampal output) of 5×FAD mice (6-month-old), suggesting that synaptic communication in the EC to subiculum circuit is specifically blocked in this AD model. In addition, optogenetic stimulation of glutamatergic terminals from prefrontal cortex (PFC) induced smaller responses in EC of 5×FAD and P301S Tau mice (6-month-old), suggesting that synaptic communication in the PFC to EC pathway is compromised in both ADRD models. Chemogenetic activation of PFC to EC pathway did not affect the bursting activity of EC neurons in 5×FAD mice, but partially restored the diminished EC neuronal activity in P301S Tau mice. Conclusions: These data suggest that 5×FAD mice has a specific impairment of short-range hippocampal gateway (EC to subiculum), which may be caused by amyloid-ß deposits; while two ADRD models have a common impairment of long-range cortical to hippocampal circuit (PFC to EC), which may be caused by microtubule/tau-based transport deficits. These circuit deficits provide a pathophysiological basis for unique and common impairments of various cognitive processes in ADRD conditions.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Entorhinal Cortex/metabolism , Mice, Transgenic , Hippocampus/metabolism , Tauopathies/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal
7.
Front Aging Neurosci ; 16: 1323563, 2024.
Article in English | MEDLINE | ID: mdl-38440100

ABSTRACT

Introduction: The goal of this study is to explore the pharmacological potential of the amyloid-reducing vasodilator fasudil, a selective Ras homolog (Rho)-associated kinases (ROCK) inhibitor, in the P301S tau transgenic mouse model (Line PS19) of neurodegenerative tauopathy and Alzheimer's disease (AD). Methods: We used LC-MS/MS, ELISA and bioinformatic approaches to investigate the effect of treatment with fasudil on the brain proteomic profile in PS19 tau transgenic mice. We also explored the efficacy of fasudil in reducing tau phosphorylation, and the potential beneficial and/or toxic effects of its administration in mice. Results: Proteomic profiling of mice brains exposed to fasudil revealed the activation of the mitochondrial tricarboxylic acid (TCA) cycle and blood-brain barrier (BBB) gap junction metabolic pathways. We also observed a significant negative correlation between the brain levels of phosphorylated tau (pTau) at residue 396 and both fasudil and its metabolite hydroxyfasudil. Conclusions: Our results provide evidence on the activation of proteins and pathways related to mitochondria and BBB functions by fasudil treatment and support its further development and therapeutic potential for AD.

8.
Neurosci Lett ; 825: 137700, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38401642

ABSTRACT

Multiple biological functions of MTMR14 including regulation of autophagy, inflammation and Ca2+ homeostasis have been reported. However, its functional contribution to learning and memory remains unclear. In this study, we investigated whether upregulation of MTMR14 induced cognitive impairment and the underlying mechanisms. MTMR14 level was significantly increased in cells or brain tissues that overexpressed P301S-tau. The fusion of autophagosome and lysosome was significantly inhibited by overexpression of MTMR14 or P301S-tau. Upregulation of MTMR14 led to cognitive impairments in 2-month-old mice by inhibiting synaptic protein expression. These findings suggest that MTMR14 may be a key risk factor for cognitive ability.


Subject(s)
Alzheimer Disease , tau Proteins , Mice , Animals , Up-Regulation , Maze Learning/physiology , Mice, Transgenic , tau Proteins/metabolism , Disease Models, Animal , Alzheimer Disease/metabolism , Phosphoric Monoester Hydrolases/genetics
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 874-883, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37866941

ABSTRACT

Objective: To explore through big data analysis whether aberrant alternative splicing (AS) events precede tau P301S-induced neurodegenerative phenotype in 6-month-old PS19 mice. Methods: The original sequencing files of the GSE182170 dataset was downloaded from the European Nucleotide Archive (ENA) database with axel, aligned to the reference genome of the ENSEMBL database by using STAR software, and common AS event analysis and visualization were performed with rMATS and rmats2sashimiplot R packages. RSEM software was utilized for gene transcript quantification, Deseq2, edgeR, and limma R packages were used for differential expression analysis, and clusterProfiler R package was applied for GO enrichment analysis. String and Cytoscape were used for protein-protein interaction (PPI) analysis. Gene expression correlation analysis was performed with ggcorrplot R package. AS events were validated using PCR followed by agarose electrophoresis. Results: A total of 8 079 AS events were identified with rMATS and 117 significant AS events (ΔPSI>0.1, sequencing coverage >1) were selected eventually. The most frequent type of AS event was skipped exon (SE) (50.43%), followed by alternative 3' splice site (A3SS) and mutually exclusive exons (MXE). GO enrichment analysis revealed that synapse organization genes were aberrantly spliced in SE events and spliceosome genes were spliced in A3SS events. PPI and correlation analyses showed that the splicing factor Snrpn was significantly associated with the largest number of transcripts. Agarose electrophoresis confirmed the aberrant AS event of the Lrp8 gene in PS19 mice. Conclusion: Dysregulated splicing factors may contribute to tau P301S-induced aberrant AS changes. The study also increases the understanding of the cycling of tau protein and splicing factors in tauopathies.


Subject(s)
Alternative Splicing , tau Proteins , Mice , Animals , tau Proteins/genetics , tau Proteins/metabolism , Mice, Transgenic , Sepharose , RNA Splice Sites , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
10.
Acta Neuropathol Commun ; 11(1): 160, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798679

ABSTRACT

Mice transgenic for human mutant P301S tau are widely used as models for human tauopathies. They develop neurodegeneration and abundant filamentous inclusions made of human mutant four-repeat tau. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the brains of Tg2541 and PS19 mice. Both lines express human P301S tau (0N4R for Tg2541 and 1N4R for PS19) on mixed genetic backgrounds and downstream of different promoters (murine Thy1 for Tg2541 and murine Prnp for PS19). The structures of tau filaments from Tg2541 and PS19 mice differ from each other and those of wild-type tau filaments from human brains. The structures of tau filaments from the brains of humans with mutations P301L, P301S or P301T in MAPT are not known. Filaments from the brains of Tg2541 and PS19 mice share a substructure at the junction of repeats 2 and 3, which comprises residues I297-V312 of tau and includes the P301S mutation. The filament core from the brainstem of Tg2541 mice consists of residues K274-H329 of tau and two disconnected protein densities. Two non-proteinaceous densities are also in evidence. The filament core from the cerebral cortex of line PS19 extends from residues G271-P364 of tau. One strong non-proteinaceous density is also present. Unlike the tau filaments from human brains, the sequences following repeat 4 are missing from the cores of tau filaments from the brains of Tg2541 and PS19 mice.


Subject(s)
Tauopathies , tau Proteins , Humans , Mice , Animals , Cryoelectron Microscopy , Mice, Transgenic , tau Proteins/metabolism , Tauopathies/metabolism , Brain/metabolism , Cytoskeleton/metabolism , Disease Models, Animal
11.
Cells ; 12(10)2023 05 18.
Article in English | MEDLINE | ID: mdl-37408256

ABSTRACT

Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.


Subject(s)
Tauopathies , Mice , Animals , Tauopathies/metabolism , Mice, Transgenic , Neurons/metabolism , Brain/metabolism , Hippocampus/metabolism
12.
Brain Res Bull ; 200: 110685, 2023 08.
Article in English | MEDLINE | ID: mdl-37330021

ABSTRACT

Human tauopathies, including Alzheimer's disease (AD), are a major class of neurodegenerative diseases characterized by intracellular deposition of pathological hyperphosphorylated forms of Tau protein. Complement system is composed of many proteins, which form a complex regulatory network to modulate the immune activity in the brain. Emerging studies have demonstrated a critical role of complement C3a receptor (C3aR) in the development of tauopathy and AD. The underlying mechanisms by which C3aR activation mediates tau hyperphosphorylation in tauopathies, however, remains largely unknown. Here, we observed that the expression of C3aR is upregulated in the brains of P301S mice - a mouse model of tauopathy and AD. Pharmacologic blockade of C3aR ameliorates synaptic integrity and reduced tau hyperphosphorylation in P301S mice. Besides, the administration of C3aR antagonist (C3aRA: SB 290157) improved spatial memory as tested in the Morris water maze. Moreover, C3a receptor antagonist inhibited tau hyperphosphorylation by regulating p35/CDK5 signaling. In summary, results suggest that the C3aR plays an essential role in the accumulation of hyperphosphorylated Tau and behavioral deficits in P301S mice. C3aR could be a feasible therapeutic target for the treatment of tauopathy disorders, including AD.


Subject(s)
Alzheimer Disease , Cognition Disorders , Tauopathies , Mice , Humans , Animals , Mice, Transgenic , tau Proteins/metabolism , Tauopathies/drug therapy , Tauopathies/pathology , Alzheimer Disease/metabolism , Cognition , Disease Models, Animal
13.
J Proteome Res ; 22(4): 1309-1321, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36888912

ABSTRACT

O-ß-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).


Subject(s)
beta-N-Acetylhexosaminidases , tau Proteins , Animals , Humans , Mice , Acetylglucosamine/pharmacology , beta-N-Acetylhexosaminidases/genetics , Mice, Transgenic , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation , tau Proteins/chemistry , Tandem Mass Spectrometry
14.
Mol Neurodegener ; 18(1): 10, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732784

ABSTRACT

BACKGROUND: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level. METHODS: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics. The results were compared to human AD and to human patients that suffered from early onset dementia and that carry the P301L Tau mutation. RESULTS: Both mouse models accumulate insoluble Tau species during disease. The Tau aggregation is driven by progressive phosphorylation within the proline rich domain and the C-terminus of the protein. This is reflective of early disease stages of human AD and of the pathology of dementia patients carrying the P301L Tau mutation. However, Tau ubiquitination and acetylation, which are important to late-stage human AD are not represented in the mouse models. CONCLUSION: AD mouse models that overexpress human Tau using risk mutations are a suitable tool for testing drug candidates that aim to intervene in the early formation of insoluble Tau species promoted by increased phosphorylation of Tau.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/genetics , tau Proteins/metabolism , Mice, Transgenic , Tauopathies/metabolism , Alzheimer Disease/metabolism , Phosphorylation , Disease Models, Animal
15.
Acta Neuropathol Commun ; 11(1): 5, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631898

ABSTRACT

Tauopathies, including Alzheimer's disease, are characterized by retinal ganglion cell loss associated with amyloid and phosphorylated tau deposits. We investigated the functional impact of these histopathological alterations in the murine P301S model of tauopathy. Visual impairments were demonstrated by a decrease in visual acuity already detectable at 6 months, the onset of disease. Visual signals to the cortex and retina were delayed at 6 and 9 months, respectively. Surprisingly, the retinal output signal was delayed at the light onset and advanced at the light offset. This antagonistic effect, due to a dysfunction of the cone photoreceptor synapse, was associated with changes in the expression of the vesicular glutamate transporter and a microglial reaction. This dysfunction of retinal glutamatergic synapses suggests a novel interpretation for visual deficits in tauopathies and it highlights the potential value of the retina for the diagnostic assessment and the evaluation of therapies in Alzheimer's disease and other tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , Alzheimer Disease/pathology , tau Proteins/metabolism , Mice, Transgenic , Tauopathies/pathology , Synapses/metabolism , Disease Models, Animal
16.
Front Mol Biosci ; 9: 1030534, 2022.
Article in English | MEDLINE | ID: mdl-36387280

ABSTRACT

Emerging evidence from Alzheimer's disease (AD) patients suggests that reducing tau pathology can restore cognitive and memory loss. To reduce tau pathology, it is critical to find brain-permeable tau-degrading small molecules that are safe and effective. HDAC6 inhibition has long been considered a safe and effective therapy for tau pathology. Recently, we identified protopine as a dibenzazecine alkaloid with anti-HDAC6 and anti-AD activities. In this study, we synthesized and tested novel protopine derivatives for their pharmacological action against AD. Among them, bromo-protopine (PRO-Br) demonstrated a two-fold increase in anti-HDAC6 activity and improved anti-tau activities compared to the parent compound in both in vitro and in vivo AD models. Furthermore, molecular docking results showed that PRO-Br binds to HDAC6, with a ∆G value of -8.4 kcal/mol and an IC50 value of 1.51 µM. In neuronal cell lines, PRO-Br reduced pathological tau by inducing chaperone-mediated autophagy (CMA). In 3xTg-AD and P301S tau mice models, PRO-Br specifically decreased the pathogenic hyperphosphorylated tau clumps and led to the restoration of memory functions. In addition, PRO-Br treatment promoted the clearance of pathogenic tau by enhancing the expression of molecular chaperones (HSC70) and lysosomal markers (LAMP2A) via CMA in AD models. Our data strongly suggest that administration of the brain-permeable protopine derivative PRO-Br, could be a viable anti-tau therapeutic strategy for AD.

17.
Front Mol Biosci ; 9: 1050768, 2022.
Article in English | MEDLINE | ID: mdl-36387285

ABSTRACT

Many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17, are characterized by tau pathology. Numerous motor proteins, many of which are involved in synaptic transmission, mediate transport in neurons. Dysfunction in motor protein-mediated neuronal transport mechanisms occurs in several neurodegenerative disorders but remains understudied in AD. Kinesins are the most important molecular motor proteins required for microtubule-dependent transport in neurons, and kinesin-1 is crucial for neuronal transport among all kinesins. Although kinesin-1 is required for normal neuronal functions, the dysfunction of these motor domains leading to neurodegenerative diseases is not fully understood. Here, we reported that the kinesin-I heavy chain (KIF5B), a key molecular motor protein, is involved in tau homeostasis in AD cells and animal models. We found that the levels of KIF5B in P301S tau mice are high. We also found that the knockdown and knockout (KO) of KIFf5B significantly decreased the tau stability, and overexpression of KIF5B in KIF5B-KO cells significantly increased the expression of phosphorylated and total tau levels. This suggested that KIF5B might prevent tau accumulation. By conducting experiments on P301S tau mice, we showed that partially reducing KIF5B levels can reduce hyperphosphorylation of the human tau protein, formation of insoluble aggregates, and memory impairment. Collectively, our results suggested that decreasing KIF5B levels is sufficient to prevent and/or slow down abnormal tau behavior of AD and other tauopathies.

18.
Inflammopharmacology ; 30(5): 1871-1890, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35922737

ABSTRACT

BACKGROUND AND OBJECTIVE: Tauopathy is a group of neurodegenerative diseases in which the pathogenesis processes are related to tau protein. The imbalances between the activities of kinases and phosphatases of tau protein lead to tau hyperphosphorylation and subsequent neurodegeneration. Numerous studies suggest a strong linkage between type 2 diabetes mellitus (T2D) and neurodegenerative diseases. Therefore, finding a drug with a dual therapeutic activity against T2D and neuroprotective will be a promising idea. Hence, the potential neuroprotective effect of Glimepiride (GPD) against tauopathy was evaluated in the current study. METHODS: P301S mice model was employed for tauopathy and C57BL/6 wild type mice (WT) was used as control. Phosphorylated and acetylated tau protein levels was assessed in cortex and hippocampus by western blot. Effect of GPD on tauopathy related enzymes, neuroinflammation, apoptotic markers were evaluated. Furthermore, the neuroprotective effects against anxiety like behavior and motor impairment was analyzed using Parallel rod floor and Open field tests. RESULTS: GPD significantly ameliorates motor impairment, anxiety like behavior and neurodegeneration in P301S mice. Phosphorylated tau and acetylated tau were significantly decreased in both cortex and hippocampus of P301S mice via decreasing GSK3ß, increasing ratio of phosphorylated-AKT to total-AKT, increasing PP2A and normalization of CDK5 levels. Furthermore, GPD treatment also decreased neuroinflammation and apoptosis by reducing NF-kB, TNF-α and caspase 3 levels. CONCLUSION: The current data suggests that GPD exerts a protective effect against tauopathy, behavioural consequences, neurodegeneration, neuroinflammation and apoptosis. GPD is therefore a promising agent for the treatment of neurodegenerative diseases associated with tauopathy.


Subject(s)
Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Neuroprotective Agents , Tauopathies , Animals , Caspase 3 , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Phosphoric Monoester Hydrolases/therapeutic use , Proto-Oncogene Proteins c-akt , Sulfonylurea Compounds , Tauopathies/drug therapy , Tauopathies/metabolism , Tauopathies/pathology , Tumor Necrosis Factor-alpha , tau Proteins/metabolism , tau Proteins/therapeutic use
19.
Clin Transl Med ; 12(8): e1003, 2022 08.
Article in English | MEDLINE | ID: mdl-35917404

ABSTRACT

BACKGROUND: Human Tau (hTau) accumulation and synapse loss are two pathological hallmarks of tauopathies. However, whether and how hTau exerts toxic effects on synapses remain elusive. METHODS: Mutated hTau (P301S) was overexpressed in the N2a cell line, primary hippocampal neurons and hippocampal CA3. Western blotting and quantitative polymerase chain reaction were applied to examine the protein and mRNA levels of synaptic proteins. The protein interaction was tested by co-immunoprecipitation and proximity ligation assays. Memory and emotion status were evaluated by a series of behavioural tests. The transcriptional activity of nuclear factor-erythroid 2-related factor 2 (NRF2) was detected by dual luciferase reporter assay. Electrophoresis mobility shift assay and chromosome immunoprecipitation were conducted to examine the combination of NRF2 to specific anti-oxidative response element (ARE) sequences. Neuronal morphology was analysed after Golgi staining. RESULTS: Overexpressing P301S decreased the protein levels of post-synaptic density protein 93 (PSD93), PSD95 and synapsin 1 (SYN1). Simultaneously, NRF2 was decreased, whereas Kelch-like ECH-associated protein 1 (KEAP1) was elevated. Further, we found that NRF2 could bind to the specific AREs of DLG2, DLG4 and SYN1 genes, which encode PSD93, PSD95 and SYN1, respectively, to promote their expression. Overexpressing NRF2 ameliorated P301S-reduced synaptic proteins and synapse. By means of acetylation at K312, P301S increased the protein level of KEAP1 via inhibiting KEAP1 degradation from ubiquitin-proteasome pathway, thereby decreasing NRF2 and reducing synapse. Blocking the P301S-KEAP1 interaction at K312 rescued the P301S-suppressed expression of synaptic proteins and memory deficits with anxiety efficiently. CONCLUSIONS: P301S-hTau could acetylate KEAP1 to trigger synaptic toxicity via inhibiting the NRF2/ARE pathway. These findings provide a novel and potential target for the therapeutic intervention of tauopathies.


Subject(s)
NF-E2-Related Factor 2 , Tauopathies , Carboxylic Ester Hydrolases/metabolism , Genes, Regulator , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Response Elements , Tauopathies/genetics
20.
Phytomedicine ; 96: 153887, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936968

ABSTRACT

BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Animals , Benzophenanthridines , Berberine Alkaloids , Disease Models, Animal , Histone Deacetylase 6/antagonists & inhibitors , Mice , Mice, Transgenic , Molecular Docking Simulation , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL