Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.413
Filter
1.
Eur Urol Oncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964997

ABSTRACT

BACKGROUND: Salvage radiation therapy (SRT) is a mainstay of treatment for biochemical relapse following radical prostatectomy; however, few studies have examined genomic biomarkers in this context. OBJECTIVE: We characterized the prognostic impact of previously identified deleterious molecular phenotypes-loss of PTEN, ERG expression, and TP53 mutation-for patients undergoing SRT. DESIGN, SETTING, AND PARTICIPANTS: We leveraged an institutional database of 320 SRT patients with available tissue and follow-up. Tissue microarrays were used for genetically validated immunohistochemistry assays. INTERVENTION: All men underwent SRT with or without androgen deprivation therapy OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Univariable and multivariable Cox-proportional hazard models assessed the association of molecular phenotypes with biochemical recurrence-free (bRFS) and metastasis-free (MFS) survival after SRT. RESULTS AND LIMITATIONS: Loss of PTEN (n = 123, 43%) and ERG expression (n = 118, 39%) were common in this cohort, while p53 overexpression (signifying TP53 missense mutation) was infrequent (n = 21, 7%). In univariable analyses, any loss of PTEN portended worse bRFS (hazard ratio [HR] 1.86; 95% confidence interval 1.36-2.57) and MFS (HR 1.89; 1.21-2.94), with homogeneous PTEN loss being associated with the highest risk of MFS (HR 2.47; 1.54-3.95). Similarly, p53 overexpression predicted worse bRFS (HR 1.95; 1.14-3.32) and MFS (HR 2.79; 1.50-5.19). ERG expression was associated with worse MFS only (HR 1.6; 1.03-2.48). On the multivariable analysis adjusting for known prognostic features, homogeneous PTEN loss remained predictive of adverse bRFS (HR 1.82; 1.12-2.96) and MFS (HR 2.08; 1.06-4.86). The study is limited by its retrospective and single-institution design. CONCLUSIONS: PTEN loss by immunohistochemistry is an independent adverse prognostic factor for bRFS and MFS in prostate cancer patients treated with SRT. Future trials will determine the optimal approach to treating SRT patients with adverse molecular prognostic features. PATIENT SUMMARY: Loss of the PTEN tumor suppressor protein is associated with worse outcomes after salvage radiotherapy, independent of other clinical or pathologic patient characteristics.

2.
Dis Res ; 4(1): 31-39, 2024.
Article in English | MEDLINE | ID: mdl-38962090

ABSTRACT

As key modulators of the immune response, interferons play critical roles following infection and during the pathogenesis of cancer. The idea that these cytokines might be developed as new therapies emerged soon after their discovery. While enthusiasm for this approach to cancer therapy has waxed and waned over the ensuing decades, recent advances in cancer immunotherapy and our improved understanding of the tumor immune environment have led to a resurgence of interest in this unique class of biologic drug. Here, we review how interferons influence the growth of colorectal cancers (CRCs) and highlight new insights into how interferons and drugs that modulate interferon expression might be most effectively deployed in the clinic.

3.
Oncol Lett ; 28(2): 395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966586

ABSTRACT

Anal squamous cell carcinoma (SCC) treated with definitive radiotherapy (RT)/chemoradiotherapy (CRT) has shown high success rates, yet challenges such as treatment resistance and recurrence persist. The present study aimed to investigate the associations between immunohistochemical (IHC) evaluation, treatment response and prognosis in anal SCC. A retrospective cohort analysis included 42 patients with anal SCC treated at a single institution between 2006 and 2022. Human papillomavirus (HPV) status was determined, and the IHC analysis of p16, p53 and PD-L1 expression was conducted using formalin-fixed, paraffin-embedded biopsies. A complete response to RT/CRT was observed in 71.4% of patients. Recurrence occurred in 38.1% of cases, of which 7.1% had local-regional recurrence (LRR), 14.3% had distant recurrence (DR), and 16.7% had both LRR and DR. HPV positivity (71.4%) was significantly associated with p16 positivity. Lack of complete response was associated with HPV-negative status, p16-negative status, increased recurrence and DR. In addition, recurrence was significantly associated with p53-positive status, and p53 positivity was significantly associated with increased LRR. PD-L1 positivity, defined as a combined positive score (CPS) ≥1% was found in 73.8% of the patients, and exhibited significant associations with HPV positivity and p16 positivity. PD-L1 CPS ≥ 1% was also associated with an increased LRR. Univariate analysis revealed that age <65 years, a complete response and HPV positivity were associated with increased 5-year overall survival (OS), while a complete response, HPV positivity and p53-negative status were associated with increased 5-year disease-free survival (DFS). Multivariate analysis identified that age <65 years and HPV positivity are independent prognostic factors for 5-year OS, and a complete response and p53-negative status are independent prognostic factors for 5-year DFS. In conclusion, these findings suggust that the identification of HPV status and poor prognostic biomarkers at diagnosis may be used to guide personalized treatment strategies, with the combination of immunotherapy with standard CRT potentially providing improved outcomes.

4.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950659

ABSTRACT

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

6.
Pathol Res Pract ; 260: 155443, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38981348

ABSTRACT

Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.

7.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981482

ABSTRACT

Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.

8.
Oman Med J ; 39(2): e607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38988797

ABSTRACT

Objectives: Ameloblastoma, comprising approximately 11% of all odontogenic tumors, is a locally aggressive tumor with a high recurrence rate. This study aimed to assess the immunohistochemical expression of Ki-67 and p53 and their association with clinical and pathological factors among patients with ameloblastoma. Methods: Retrospective follow-up data of patients histologically confirmed with ameloblastoma at Makerere College of Health Sciences in Kampala, Uganda from January 2012 to December 2018 were retrieved. Factors associated with Ki-67 and p53 immunohistochemical expression were determined using one-way one-way analysis of variance. Chi-square and Fisher's exact statistical tests were used to assess factors associated with recurrence. A two-tailed p < 0.05 was considered statistically significant. Results: A total of 40 patients confirmed histologically with ameloblastoma were included in the analysis. The majority (62.5%) of cases were of the conventional type of ameloblastoma. The expressions of Ki-67 and p53 were 52.5% and 85.0%, respectively. Recurrence was found in 47.5% of patients and it was associated with conventional histological type (p=0.042), segmental resection (p < 0.001), tumor size (p < 0.001), and high p53 expression (p=0.041). Conclusions: Almost half the cases in this study had recurrence. The immunohistochemical expression of p53 was significantly higher than that of Ki-67.

9.
J Gastrointest Oncol ; 15(3): 1002-1019, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989407

ABSTRACT

Background: Tumor cell inhibition is a pivotal focus in anti-cancer research, and extensive investigations have been conducted regarding the role of p53. Numerous studies have highlighted its close association with reactive oxygen species (ROS). However, the precise impact of the antioxidant glutathione (GSH) in this context remains inadequately elucidated. Here, we will elucidate the anti-cancer mechanisms mediated by p53 following treatment with GSH. Methods: In this study, we employed a p53 gene knockout approach in SW480 colorectal cells and conducted comprehensive analyses of 20 amino acids and proteomics using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results: These analyses unveiled profound alterations in amino acids and proteins triggered by GSH treatment, shedding light on novel phenomena and delineating the intricate interplay between GSH and cellular proteins. The deletion of the p53 gene exerts a profound influence on tumor cell proliferation. Moreover, tumor cell proliferation is significantly affected by elevated GSH levels. Importantly, in the absence of the p53 gene, cells exhibit heightened sensitivity to GSH, leading to inhibited cell growth. The combined therapeutic approach involving GSH and p53 gene deletion expedites the demise of tumor cells. It is noteworthy that this treatment leads to a marked decline in amino acid metabolism, particularly affecting the down-regulation of methionine (Met) and phenylalanine (Phe) amino acids. Among the 41 proteins displaying significant changes, 8 exhibit consistent alterations, with 5 experiencing decreased levels and 3 demonstrating increased quantities. These proteins primarily participate in crucial cellular metabolic processes and immune functions. Conclusions: In conclusion, the concurrent administration of GSH treatment and p53 gene deletion triggers substantial modifications in the amino acid and protein metabolism of tumor cells, primarily characterized by down-regulation. This, in turn, compromises cell metabolic activity and immune function, ultimately culminating in the demise of tumor cells. These newfound insights hold promising implications and could pave the way for the development of straightforward and efficacious anti-cancer treatments.

10.
Tissue Cell ; 89: 102458, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38991271

ABSTRACT

CISD2 and ferroptosis participate in cancer development, but are rarely reported in ovarian cancer. This study aimed to clarify interaction between CISD2 and ferroptosis and evaluate related mechanisms. si-CISD2, wt-p53 and mut-p53 lentiviruses were transfected into SKOV-3 cells. CISD2 and p53 (wild/mutant p53) gene transcriptions were evaluated by RT-PCR. Cell viability, invasion ability, and migration capacity were determined. Expressions of ferroptosis-associated CISD2, p53, elastin, ß-catenin and levels of Gpx4 and TRF were examined. CISD2 downregulation (si-CISD2) has a significant inhibitory effect on cell activity and exerts a synergistic effect with p53. si-CISD2 and Wt-p53 markedly inhibited SKOV-3 invasion and migration capacity, compared to the downregulation control (si-NC) and overexpression control (ov-NC) group (p < 0.001). p53 expression was increased significantly in si-CISD2 treated SKOV-3, compared to si-NC treated cells (p < 0.05). si-CISD2 markedly decreased elastin and ß-catenin expression compared to the si-NC and ov-NC group (p < 0.001). si-CISD2 modulated ferroptosis-associated molecules (CDKN1A, GLS2, SAT1, SLC7A11), decreased Gpx4 and increased TRF levels in SKOV-3. si-CISD2 and Wt-p53 played an obvious synergistic role in regulating ferroptosis-associated molecules and Gpx4/TRF pathway molecules. In conclusion, CISD2 downregulation was involved in ferroptosis process of SKOV-3 cells. This effect of CISD2 was mediated by wild-type p53-associated GLS2/SAT1/SLC7A11 and Gpx4/TRF pathway.

11.
Bioorg Chem ; 150: 107620, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38991490

ABSTRACT

MDM2 is a gene that encodes a protein involved in cell survival, growth, and DNA repair. It has been implicated in the development and progression of glioblastoma (GBM). Inhibition of the MDM2-p53 interaction has emerged as a promising strategy for treating GBM. In this study, we performed comprehensive transcriptomic expression analysis from diverse datasets and observed MDM2 overexpression in a subset of GBM cases. MDM2 negatively regulates the major onco-suppressor p53. The interaction between MDM2 and p53 is a promising target for cancer therapy, as it can trigger p53-mediated cell death in response to different stress conditions, such as oncogene activation or DNA damage. In this study, we have identified a peptide-based inhibition of MDM2 as a therapeutic strategy for GBM. We have further validated the stability of the MDM2-peptide interaction using a molecular structural dynamics approach. The major trajectories, including root mean square of deviation (RMSD), root mean square of fluctuation (RMSF), and radius of gyration (RoG), indicate that the candidate peptides have a more stable binding compared to the native ligand and control drug. The stability of the binding interaction was further estimated by MMGBSA analysis, which also suggests that MDM2 has a stable binding with both peptide molecules. Based on these results, peptides P-1843 and P-3837 could be tested further for experimental validation to confirm their targeted inhibition of MDM-2. This approach could provide a highly selective and efficient inhibitor with potentially fewer side effects and less toxicity compared to small drug-based molecules.

12.
J Zhejiang Univ Sci B ; : 1-13, 2024 Jul 09.
Article in English, Chinese | MEDLINE | ID: mdl-38993052

ABSTRACT

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.

13.
G3 (Bethesda) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985658

ABSTRACT

One of a major function of programmed cell death (apoptosis) is the removal of cells which suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes which, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS-promoters at both ends which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS-promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, seven genes were identified which suppressed the p53-induced apoptosis. In four mutants, the suppression effect resulted from single genes activated by one UAS-promoter (Pka-R2, Rga, crol, Spt5). In the other three (Orct2, Polr2M, stg), deleting either UAS-promoter eliminated the suppression effect. In qPCR experiments we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eucaryotic genomes there are co-expressed gene clusters. Three of the DEP insertion mutants are included and two are in close vicinity of separate co-expressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.

14.
Pituitary ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995473

ABSTRACT

INTRODUCTION: Silent corticotroph tumors (siACTH) represent a rare entity of pituitary tumors (PT), usually more aggressive than other PT. Few predictor factors of recurrence in the post-operative period have been proposed until now. This study aimed (1) to evaluate the clinical outcome of siACTH after surgery according to a five-tiered clinicopathological classification (2) to compare siACTH characteristics to ACTH-secreting macroadenomas (macroCD), and silent gonadotropinomas (siLH/FSH). PATIENTS AND METHODS: Between 2008 and 2022, 29 siACTH out of 865 PT cases operated in one tertiary center were included. Clinical, paraclinical, histological, and surgical data were collected and compared to 25 macroCD and 143 siLH/FSH cases, respectively. The tumor grading was established according to both invasion (no = 1; yes = 2) and proliferation (no = a; yes = b). Progression-free survival was estimated using Kaplan-Meier method and log-rank test. RESULTS: We identified 15 (51.7%) grade 1a, 11 (37.9%) grade 2a and 3 (10.3%) grade 2b siACTH with a trend for a 7-fold-time higher risk of progression/recurrence in grade 2b as compared to 1a (p = 0.06). The repartition of tumor grades was similar between the three subgroups, however a 5.7-fold-higher risk of progression was observed in grade 1a siACTH than in grade 1a siLH/FSH (p = 0.02). Compared to siLH/FSH, higher ACTH levels may help to preoperatively identify siACTH. CONCLUSION: The five-tiered clinicopathological classification contribute to predict the risk of recurrence of operated siACTH tumors. Noteworthy, non-invasive and non-proliferative siACTH exhibit a less favorable outcomes than their siLH/FSH counterparts, which should prompt for a personalized follow up.

15.
Mol Divers ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951417

ABSTRACT

Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.

16.
EMBO J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951610

ABSTRACT

Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.

17.
World J Gastroenterol ; 30(23): 2931-2933, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946877

ABSTRACT

In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a critical condition characterized by rapid hepatocellular injury and organ dysfunction, and it often necessitates liver transplant to ensure patient survival. Recent research has elucidated the involvement of distinct cell death pathways, namely ferroptosis and pyroptosis, in the pathogenesis of ALF. Ferroptosis is driven by iron-dependent lipid peroxidation, whereas pyroptosis is an inflammatory form of cell death; both pathways contribute to hepatocyte death and exacerbate tissue damage. This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF, highlighting the role of key regulators such as silent information regulator sirtuin 1. Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways. Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.


Subject(s)
Ferroptosis , Liver Failure, Acute , Pyroptosis , Animals , Humans , Hepatocytes/metabolism , Iron/metabolism , Lipid Peroxidation , Liver/metabolism , Liver/pathology , Liver Failure, Acute/metabolism , Liver Failure, Acute/therapy , Liver Transplantation , Signal Transduction , Sirtuin 1/metabolism
18.
Eur J Obstet Gynecol Reprod Biol ; 300: 23-28, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972163

ABSTRACT

OBJECTIVE: Prognostic stratification of endometrial cancer involves the assessment of stage, uterine risk factors, and molecular classification. This process can be further refined through annotation of prognostic biomarkers, notably L1 cell adhesion molecule (L1CAM) and hormonal receptors. Loss of asparaginase-like protein 1 (ASRGL1) has been shown to correlate with poor outcome in endometrial cancer. Our objective was to assess prognostication of endometrial cancer by ASRGL1 in conjunction with other available methodologies. STUDY DESIGN: This was a retrospective study of patients who underwent primary treatment at a single tertiary center. Tumors were molecularly classified by the Proactive Molecular Risk Classifier for Endometrial Cancer. Expression of ASRGL1, L1CAM, estrogen receptor, and progesterone receptor was determined by immunohistochemistry. ASRGL1 expression intensity was scored into four classes. RESULTS: In a cohort of 775 patients, monitored for a median time of 81 months, ASRGL1 expression intensity was related to improved disease-specific survival in a dose-dependent manner (P < 0.001). Low expression levels were associated with stage II-IV disease and presence of uterine factors, i.e. high grade, lymphovascular space invasion, and deep myometrial invasion (P < 0.001 for all). Among the molecular subgroups, low expression was most prevalent in p53 abnormal carcinomas (P < 0.001). Low ASRGL1 was associated with positive L1CAM expression and negative estrogen and progesterone receptor expression (P < 0.001 for all). After adjustment for stage and uterine factors, strong ASRGL1 staining intensity was associated with a lower risk for cancer-related deaths (hazard ratio 0.56, 95 % confidence interval 0.32-0.97; P = 0.038). ASRGL1 was not associated with the outcome when adjusted for stage, molecular subgroups, L1CAM, and hormonal receptors. When analyzed separately within the different molecular subgroups, ASRGL1 showed an association with disease-specific survival specifically in "no specific molecular profile" subtype carcinomas (P < 0.001). However, this association became nonsignificant upon controlling for confounders. CONCLUSIONS: Low ASRGL1 expression intensity correlates with poor survival in endometrial cancer. ASRGL1 contributes to more accurate prognostication when controlled for stage and uterine factors. However, when adjusted for stage and other biomarkers, including molecular subgroups, ASRGL1 does not improve prognostic stratification.

19.
Int J Biol Macromol ; : 133652, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971273

ABSTRACT

Eighteen S rRNA factor 1 (ESF1) is a predominantly nucleolar protein essential for embryogenesis. Our previous studies have suggested that Esf1 is a negative regulator of the tumor suppressor protein p53. However, it remains unclear whether ESF1 contributes to tumorigenesis. In this current research, we find that increased ESF1 expression correlates with poor survival in multiple tumors including pancreatic cancer. ESF1 is able to regulate cell proliferation, migration, DNA damage-induced apoptosis, and tumorigenesis. Mechanistically, ESF1 physically interacts with MDM2 and is essential for maintaining the stability of MDM2 protein by inhibiting its ubiquitination. Additionally, ESF1 also prevented stress-induced stabilization of p53 in multiple cancer cells. Hence, our findings suggest that ESF1 is a potent regulator of the MDM2-p53 pathway and promotes tumor progression.

20.
J Clin Med ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999437

ABSTRACT

Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the protein expression statuses in tumor cells. Results: Glucose-regulated protein 94 (GRP94), a protein that serves as a pro-survival component under endoplasmic reticulum (ER) stress in the tumor microenvironment, was significantly associated with a shortened survival. Furthermore, significant differences were observed when GRP94 was combined with six other factors. The six factors were (1) programmed cell death-ligand 1 (PD-L1); (2) programmed cell death 1 (PD-1); (3) aldo-keto reductase family 1 member C3 (AKR1C3); (4) P53, a tumor suppressor; (5) glucose-regulated protein 78 (GRP78), an ER stress protein; and (6) thymidine phosphorylase (TP). Based on the combination of GRP94 and the six other factors expressed in the tumors, we propose a new prognostic classification system for TCL (TCL Urayasu classification). Group 1 (relatively good prognosis): GRP94-negative (n = 6; median OS, 88 months; p < 0.01); Group 2 (poor prognosis): GRP94-positive, plus expression of two of the six factors mentioned above (n = 5; median OS, 25 months; p > 0.05); and Group 3 (very poor prognosis): GRP94-positive, plus expression of at least three of the six factors mentioned above (n = 5; median OS, 10 months; p < 0.01). Conclusions: Thus, the TCL Urayasu prognostic classification may be a simple, useful, and innovative classification that also explains the mechanism of resistance to treatment for each functional protein. If validated in a larger number of patients, the TCL Urayasu classification will enable a targeted treatment using selected inhibitors acting on the abnormal protein found in each patient.

SELECTION OF CITATIONS
SEARCH DETAIL
...