Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
IUBMB Life ; 65(11): 930-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24265200

ABSTRACT

In this article, the experiments used to construct the ambient pH-signaling network involved in the secretion of enzymes by filamentous fungi have been reviewed, focusing on the phosphate-repressible phosphatases in Aspergillus nidulans. Classic and molecular genetics have been used to demonstrate that proteolysis of the transcription factor PacC at alkaline ambient pH is imperative for its action, implying that the full-length version is not an active molecular form of PacC. It has been hypothesized that the transcriptional regulator PacC may be functional at both acidic and alkaline ambient pH, in either the full-length or the proteolyzed form, if it carries a pal-dependent molecular tag. The products of the pal genes are involved in a metabolic pathway that led to the synthesis of effector molecules that tag the pacC product, perhaps facilitating its proteolysis.


Subject(s)
Aspergillus nidulans/enzymology , Fungal Proteins/physiology , Phosphates/metabolism , Transcription Factors/physiology , Aspergillus nidulans/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Models, Biological , Models, Chemical , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism
2.
Braz. j. microbiol ; Braz. j. microbiol;40(4): 933-942, Oct.-Dec. 2009. graf, tab
Article in English | LILACS | ID: lil-528178

ABSTRACT

External pH constitutes one of the most important environmental factors that control growth, metabolism and differentiation in microorganisms, including fungi. We have analyzed the effect of external pH on sterigmatocystin biosynthesis in Aspergillus nidulans. It was observed in repeated experiments that alkaline pH, in opposition to acid pH, increased sterigmatocystin production and the transcript levels of aflR, the master gene that regulates expression of the sterigmatocystin cluster in A. nidulans. It is known that pH effects in fungi operate mostly through the Pal/Pac signaling pathway, originally described in Aspergillus nidulans. Accordingly, we studied the role of this signaling pathway in ST biosynthesis. It was observed that aflR transcript levels were increased in the "alkalinity mimicking" mutant pacCc14 and were minimal in the "acidity mimicking" mutant palA1. No sterigmatocystin was produced by palA1 or pacC- mutants at neither acid or alkaline pH of incubation. Finally, fluG and flbA, genes known to regulate both conidiation and sterigmatocystin synthesis upstream in the regulatory cascade, were up-regulated at alkaline pH.


Subject(s)
Aspergillus nidulans/growth & development , Aspergillus nidulans/metabolism , Gene Expression Regulation , In Vitro Techniques , Mycotoxins/analysis , Mycotoxins/metabolism , Polymerase Chain Reaction , Protein Biosynthesis , Hydrogen-Ion Concentration , Methods , Methods
3.
Braz J Microbiol ; 40(4): 933-42, 2009 Oct.
Article in English | MEDLINE | ID: mdl-24031444

ABSTRACT

External pH constitutes one of the most important environmental factors that control growth, metabolism and differentiation in microorganisms, including fungi. We have analyzed the effect of external pH on sterigmatocystin biosynthesis in Aspergillus nidulans. It was observed in repeated experiments that alkaline pH, in opposition to acid pH, increased sterigmatocystin production and the transcript levels of aflR, the master gene that regulates expression of the sterigmatocystin cluster in A. nidulans. It is known that pH effects in fungi operate mostly through the Pal/Pac signaling pathway, originally described in Aspergillus nidulans. Accordingly, we studied the role of this signaling pathway in ST biosynthesis. It was observed that aflR transcript levels were increased in the "alkalinity mimicking" mutant pacC(c)14 and were minimal in the "acidity mimicking" mutant palA1. No sterigmatocystin was produced by palA1 or pacC- mutants at neither acid or alkaline pH of incubation. Finally, fluG and flbA, genes known to regulate both conidiation and sterigmatocystin synthesis upstream in the regulatory cascade, were up-regulated at alkaline pH.

4.
Article in English | VETINDEX | ID: vti-444465

ABSTRACT

External pH constitutes one of the most important environmental factors that control growth, metabolism and differentiation in microorganisms, including fungi. We have analyzed the effect of external pH on sterigmatocystin biosynthesis in Aspergillus nidulans. It was observed in repeated experiments that alkaline pH, in opposition to acid pH, increased sterigmatocystin production and the transcript levels of aflR, the master gene that regulates expression of the sterigmatocystin cluster in A. nidulans. It is known that pH effects in fungi operate mostly through the Pal/Pac signaling pathway, originally described in Aspergillus nidulans. Accordingly, we studied the role of this signaling pathway in ST biosynthesis. It was observed that aflR transcript levels were increased in the "alkalinity mimicking" mutant pacCc14 and were minimal in the "acidity mimicking" mutant palA1. No sterigmatocystin was produced by palA1 or pacC- mutants at neither acid or alkaline pH of incubation. Finally, fluG and flbA, genes known to regulate both conidiation and sterigmatocystin synthesis upstream in the regulatory cascade, were up-regulated at alkaline pH.

5.
Sci. agric ; 61(3)2004.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1496440

ABSTRACT

In fungi a genetic system ensures that enzymes are secreted mainly at ambient pH values corresponding to their optima of activity. Although a great deal of information has been obtained concerning this environmental response, there is a lack of studies involving phytopathogenic, endophytic and entomopathogenic fungi as well as different aspects of fungus-host interactions. This study compares in a plate-clearing assays, the effect of ambient pH in the secretion of amylase, cellulase, lipase, pectinase and protease by endophytic, phytopathogenic, and entomopathogenic isolates belonging to several species of Colletotrichum. All enzymes were secreted in a pH-dependent manner by all isolates. Endophytes and pathogens showed distinct patterns of protease secretion, with optima at alkaline and acid growth conditions, respectively. In liquid medium, a Pi-repressible acid phosphatase of an endophytic isolate responded to ambient pH, having a 14-fold increase in secreted specific activity at acid pH, as compared to alkaline pH. Furthermore, part of a Colletotrichum pacC homologue gene, coding for a transcriptional factor responsible for pH-regulated gene expression, was cloned. Ambient pH seems to be a general factor controlling enzyme secretion in fungus-host interactions through a conserved genetic circuit.


Em fungos, um sistema de regulação gênica garante que enzimas sejam secretadas predominantemente em valores de pH do ambiente próximos aos pH ótimos de atividade correspondentes. Embora muita informação tenha sido acumulada sobre essa resposta adaptativa, não existem estudos envolvendo fungos fitopatogênicos, endofíticos e entomopatogênicos, bem como sobre outros aspectos relacionados às interações fungo-hospedeiro. No presente trabalho foi comparado, em meio sólido, o efeito do pH do ambiente na secreção das enzimas amilase, celulase, lipase, pectinase e protease por isolados endofíticos, fitopatogênico e entomopatogênicos pertencentes a diferentes espécies de Colletotrichum. Para todas as enzimas e em todos os isolados, observou-se um padrão de secreção dependente dos valores do pH do ambiente. Isolados endofíticos e patogênicos apresentaram padrões distintos de secreção de protease, com ótimos em pH de crescimento alcalino e ácido, respectivamente. Em meio líquido, uma fosfatase ácida Pi-repressível, secretada por um isolado endofítico, respondeu ao pH do ambiente, apresentando um aumento de 14 vezes na sua atividade específica durante o crescimento do fungo em meio ácido, quando comparado a meio alcalino. Além disso, foi clonada parte do gene pacC de Colletotrichum, o qual codifica um fator de transcrição responsável pela regulação dependente do pH do ambiente. É plausível a hipótese de que o pH ambiente é um fator de amplo espectro controlando a secreção enzimática durante as interações fungo-hospedeiro por meio de um circuito genético conservado.

6.
Sci. agric. ; 61(3)2004.
Article in English | VETINDEX | ID: vti-439879

ABSTRACT

In fungi a genetic system ensures that enzymes are secreted mainly at ambient pH values corresponding to their optima of activity. Although a great deal of information has been obtained concerning this environmental response, there is a lack of studies involving phytopathogenic, endophytic and entomopathogenic fungi as well as different aspects of fungus-host interactions. This study compares in a plate-clearing assays, the effect of ambient pH in the secretion of amylase, cellulase, lipase, pectinase and protease by endophytic, phytopathogenic, and entomopathogenic isolates belonging to several species of Colletotrichum. All enzymes were secreted in a pH-dependent manner by all isolates. Endophytes and pathogens showed distinct patterns of protease secretion, with optima at alkaline and acid growth conditions, respectively. In liquid medium, a Pi-repressible acid phosphatase of an endophytic isolate responded to ambient pH, having a 14-fold increase in secreted specific activity at acid pH, as compared to alkaline pH. Furthermore, part of a Colletotrichum pacC homologue gene, coding for a transcriptional factor responsible for pH-regulated gene expression, was cloned. Ambient pH seems to be a general factor controlling enzyme secretion in fungus-host interactions through a conserved genetic circuit.


Em fungos, um sistema de regulação gênica garante que enzimas sejam secretadas predominantemente em valores de pH do ambiente próximos aos pH ótimos de atividade correspondentes. Embora muita informação tenha sido acumulada sobre essa resposta adaptativa, não existem estudos envolvendo fungos fitopatogênicos, endofíticos e entomopatogênicos, bem como sobre outros aspectos relacionados às interações fungo-hospedeiro. No presente trabalho foi comparado, em meio sólido, o efeito do pH do ambiente na secreção das enzimas amilase, celulase, lipase, pectinase e protease por isolados endofíticos, fitopatogênico e entomopatogênicos pertencentes a diferentes espécies de Colletotrichum. Para todas as enzimas e em todos os isolados, observou-se um padrão de secreção dependente dos valores do pH do ambiente. Isolados endofíticos e patogênicos apresentaram padrões distintos de secreção de protease, com ótimos em pH de crescimento alcalino e ácido, respectivamente. Em meio líquido, uma fosfatase ácida Pi-repressível, secretada por um isolado endofítico, respondeu ao pH do ambiente, apresentando um aumento de 14 vezes na sua atividade específica durante o crescimento do fungo em meio ácido, quando comparado a meio alcalino. Além disso, foi clonada parte do gene pacC de Colletotrichum, o qual codifica um fator de transcrição responsável pela regulação dependente do pH do ambiente. É plausível a hipótese de que o pH ambiente é um fator de amplo espectro controlando a secreção enzimática durante as interações fungo-hospedeiro por meio de um circuito genético conservado.

SELECTION OF CITATIONS
SEARCH DETAIL