Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Article in English | MEDLINE | ID: mdl-38879414

ABSTRACT

BACKGROUND: The combination of senescence triggers with senolytic drugs is considered a promising new approach to cancer therapy. Here, we studied the efficacy of the genotoxic agent etoposide (Eto) and irradiation in inducing senescence of Panc02 pancreatic cancer cells, and the capability of the Bcl-2 inhibitor navitoclax (ABT-263; Nav) to trigger senolysis. METHODS: Panc02 cells were treated with Eto or irradiated with 5-20 Gy before exposure to Nav. Cell survival, proliferation, and senescence were assessed by trypan blue staining, quantification of DNA synthesis, and staining of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells, respectively. Levels of mRNA were determined by real-time polymerase chain reaction, and protein expression was analyzed by immunoblotting. Panc02 cells were also grown as pancreatic tumors in mice, which were subsequently treated with Eto and Nav. RESULTS: Eto and irradiation had an antiproliferative effect on Panc02 cells that was significantly or tendentially enhanced by Nav. In vivo, Eto and Nav together, but not Eto alone, significantly reduced the proportion of proliferating cells. The expression of the senescence marker γH2AX and tumor infiltration with T-cells were not affected by the treatment. In vitro, almost all Eto-exposed cells and a significant proportion of cells irradiated with 20 Gy were SA-ß-Gal-positive. Application of Nav reduced the percentage of SA-ß-Gal-positive cells after irradiation but not after pretreatment with Eto. In response to triggers of senescence, cultured Panc02 cells showed increased protein levels of γH2AX and the autophagy marker LC3B-II, and higher mRNA levels of Cdkn1a, Mdm2, and PAI-1, while the effects of Nav were variable. CONCLUSIONS: In vitro and in vivo, the combination of senescence triggers with Nav inhibited tumor cell growth more effectively than the triggers alone. Our data also provide some evidence for senolytic effects of Nav in vitro.

2.
Article in English | MEDLINE | ID: mdl-38700131

ABSTRACT

The Caatinga, an exclusively Brazilian biome, stands as a reservoir of remarkable biodiversity. Its significance transcends ecological dimensions, given the direct reliance of the local population on its resources for sustenance and healthcare. While Myrtaceae, a pivotal botanical family within the Brazilian flora, has been extensively explored for its medicinal and nutritional attributes, scant attention has been directed towards its contextual relevance within the Caatinga's local communities. Consequently, this inaugural systematic review addresses the ethnobotanical roles of Myrtaceae within the Caatinga, meticulously anchored in the PRISMA 2020 guidelines. We searched Scopus, MEDLINE/Pubmed, Scielo, and LILIACS. No date-range filter was applied. An initial pool of 203 articles was carefully scrutinized, ultimately yielding 31 pertinent ethnobotanical studies elucidating the utility of Myrtaceae amongst the Caatinga's indigenous populations. Collectively, they revealed seven distinct utilization categories spanning ~54 species and 11 genera. Psidium and Eugenia were the genera with the most applications. The most cited categories of use were food (27 species) and medicinal (22 species). The importance of accurate species identification was highlighted, as many studies did not provide enough information for reliable identification. Additionally, the potential contribution of Myrtaceae fruits to food security and human health was explored. The diversity of uses demonstrates how this family is a valuable resource for local communities, providing sources of food, medicine, energy, and construction materials. This systematic review also highlights the need for more ethnobotanical studies to understand fully the relevance of Myrtaceae species in the Caatinga, promoting biodiversity conservation, as well as support for local populations.

3.
Cells ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534324

ABSTRACT

Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.


Subject(s)
Cannabinoids , Neoplasms , Cannabinoid Receptor Agonists/pharmacology , Matrix Metalloproteinase 9/metabolism , Vimentin/metabolism , Ligands , Glycosylation , Neuraminidase/metabolism , Receptors, G-Protein-Coupled/metabolism , Cannabinoids/pharmacology , Epithelial-Mesenchymal Transition , Cadherins/metabolism
4.
BMC Complement Med Ther ; 24(1): 133, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539165

ABSTRACT

BACKGROUND: Ethyl acetate extracts from Tetrastigma hemsleyanum (Sanyeqing) (EFT), a member of the Vitaceae plant family, have been shown to exhibit efficacy against a variety of cancers. In this light, our current study seeks to examine the mechanism of efficacy between EFT extracts and human pancreatic cancer PANC-1 cells. METHODS: The chemical components of EFT were analyzed by gas chromatography-mass spectrometry. The cytotoxicity of EFT on PANC-1 cells was measured using an MTT assay. In order to investigate EFT induction of cell cycle arrest, changes in cell-cycle distribution were monitored by flow cytometry. Wound healing and transwell assays were employed to investigate whether migration and invasion of PANC-1 cells were inhibited by EFT. Relative protein expression was detected using Western blot. RESULTS: GC-MS analysis of the chemical composition of EFT revealed that the majority of constituents were organic acids and their corresponding esters. EFT exhibits measurable cytotoxicity and inhibition of PANC-1 invasion. Growth inhibition was primarily attributed to downregulation of CDK2 which induces cell cycle arrest in the S-phase. Inhibition of metastasis is achieved through downregulation of mesenchymal-associated genes/activators, including ZEB1, N-cadherin, Vimentin, and Fibronectin. Meanwhile, the expression of E-cadherin was significantly increased by EFT treatment. Furthermore, downregulation of MMP-2 and MMP-9 were observed. CONCLUSION: Treatment of PANC-1 with EFT demonstrated measurable cytotoxic effects. Furthermore, EFT evoked S phase arrest while inhibiting the migration and invasion of PANC-1 cells. Additionally, EFT inhibited the epithelial to mesenchymal transition and MMPs expression in PANC-1 cells. This study serves to confirm the strong therapeutic potential of EFT while identifying the mechanisms of action.


Subject(s)
Pancreatic Neoplasms , Vitaceae , Humans , Cell Line, Tumor , S Phase , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/drug therapy , Vitaceae/chemistry
5.
J Transl Med ; 22(1): 287, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493183

ABSTRACT

BACKGROUND: Protein cysteine oxidation is substantially involved in various biological and pathogenic processes, but its implications in pancreatic cancer development remains poorly understood. METHODS AND RESULTS: In this study, we performed a global characterization of protein oxidation targets in PDAC cells through iodoTMT-based quantitative proteomics, which identified over 4300 oxidized cysteine sites in more than 2100 proteins in HPDE6c7 and PANC-1 cells. Among them, 1715 cysteine residues were shown to be differentially oxidized between HPDE6c7 and PANC-1 cells. Also, charged amino acids including aspartate, glutamate and lysine were significantly overrepresented in flanking sequences of oxidized cysteines. Differentially oxidized proteins in PANC-1 cells were enriched in multiple cancer-related biological processes and signaling pathways. Specifically, the HIF-1 signaling proteins exhibited significant oxidation alterations in PANC-1 cells, and the reduced PHD2 oxidation in human PDAC tissues was correlated with lower survival time in pancreatic cancer patients. CONCLUSION: These investigations provided new insights into protein oxidation-regulated signaling and biological processes during PDAC pathogenesis, which might be further explored for pancreatic cancer diagnosis and treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cysteine/metabolism , Proteomics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Oxidation-Reduction , Cell Line, Tumor
6.
Braz J Microbiol ; 55(2): 1693-1701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446406

ABSTRACT

Bacillus cereus sensu stricto (s.s.) is a well-known foodborne pathogen that produces a range of enterotoxins and is able to cause two different types of foodborne illnesses-the emetic and the diarrheal syndromes. In this study, 54 B. cereus s.s. strains isolated from foodstuff and foods involved in food poisoning outbreaks were characterized according to the presence of toxin-encoding genes, virulence-encoding genes, and panC typing. Most isolates were assigned to panC groups IV (61.1%) and III (25.9%), but members of groups II and V could also be found. Investigation of specific alleles revealed high numbers of isolates carrying toxin and other virulence genes including nheA (100%), nheB (100%), hblA (79.6%), hblC (79.6%), hblD (74.1%), cytK-2 (61.1%), clo (100%), pc-plc (75.9%), sph (68.5%), pi-plc (66.6%), hlyIII (62.9%), and hlyII (24.1%). All isolates were negative for ces and cytK-1. In summary, we detected various enterotoxin and other virulence factor genes associated with diarrheal syndrome in strains analyzed, implicated or not with food poisoning. Furthermore, the most isolates analyzed belong to high-risk phylogenetic groups' panC types III and IV. Our study provides a convenient molecular scheme for characterization of B. cereus s.s. strains responsible for food poisoning outbreaks in order to improve the monitoring and investigation and assess emerging clusters and diversity of strains.


Subject(s)
Bacillus cereus , Disease Outbreaks , Enterotoxins , Food Microbiology , Foodborne Diseases , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Bacillus cereus/classification , Bacillus cereus/pathogenicity , Brazil/epidemiology , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Humans , Enterotoxins/genetics , Virulence Factors/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology
7.
Bioorg Chem ; 143: 107030, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091718

ABSTRACT

Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.


Subject(s)
Cannabinoids , Cannabis , Neoplasms , Humans , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoids/metabolism , Cannabis/chemistry , Cannabis/metabolism , Glycosides/pharmacology , Glycosides/metabolism , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2311-2320, 2024 04.
Article in English | MEDLINE | ID: mdl-37819391

ABSTRACT

This current study reports, for the first time, on the potent cytotoxicity of (Z)-3-hexenyl-ß-D-glucopyranoside, as well as its cellular and molecular apoptotic mechanisms against Panc1 cancer cells. The cytotoxicity of three compounds, namely (Z)-3-hexenyl-ß-D-glucopyranoside (1), gallic acid (2), and pyrogallol (3), which were isolated from C. rotang leaf, was investigated against certain cancer and normal cells using the MTT assay. The cellular apoptotic activity and Panc1 cell cycle impact of compound (1) were examined through flow cytometry analysis and Annexin V-FITC cellular apoptotic assays. Additionally, RT-PCR was employed to evaluate the effect of compound (1) on the Panc1 apoptotic genes Casp3 and Bax, as well as the antiapoptotic gene Bcl-2. (Z)-3-hexenyl-ß-D-glucopyranoside demonstrated the highest cytotoxic activity against Panc1 cancer cells, with an IC50 value of 7.6 µM. In comparison, gallic acid exhibited an IC50 value of 21.8 µM, and pyrogallol showed an IC50 value of 198.2 µM. However, (Z)-3-hexenyl-ß-D-glucopyranoside displayed minimal or no significant cytotoxic activity against HepG2 and MCF7 cancer cells as well as WI-38 normal cells, with IC50 values of 45.8 µM, 108.7 µM, and 194. µM, respectively. (Z)-3-hexenyl-ß-D-glucopyranoside (10 µM) was demonstrated to induce cellular apoptosis and cell growth arrest at the S phase of the cell cycle in Panc1 cells. These findings were supported by RT-PCR analysis, which revealed the upregulation of apoptotic genes (Casp3 and Bax) and the downregulation of the antiapoptotic gene Bcl-2. This study emphasizes the significant cellular potency of (Z)-3-hexenyl-ß-D-glucopyranoside in specifically inducing cytotoxicity in Panc1 cells.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Caspase 3 , bcl-2-Associated X Protein , Pyrogallol/pharmacology , Antineoplastic Agents/pharmacology , MCF-7 Cells , Apoptosis , Gallic Acid/pharmacology , Cell Line, Tumor
9.
Saudi Pharm J ; 32(1): 101872, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38111670

ABSTRACT

Individuals diagnosed with cancer often turn to the use of herbal remedies with the intention of treating and ameliorating the condition, impeding the progression of metastasis, enhancing immune function, mitigating stress, and inducing relaxation. Recently, medicinal plants were combined with conventional chemotherapy to decrease the side effects and increase the effectiveness of chemotherapy. This study showed the effectiveness of gemcitabine (Gem) was significantly increased after being used together with ethyl acetate extract obtained from Vernonia amygdalina (Eav) leaves. The combination doses of Eav and Gem were determined based on cytotoxic activity using the MTT assay method. The anticancer effect of this combination was identified by several parameters including the apoptosis effect, anti-migration, and anti-invasion activities of PANC-1 cells. Furthermore, this effect was explained via protein expression evaluation using immunohistochemical and flow cytometry. The Eav has a better Inhibitory Concentration 50 (IC50) than Gem of 21.19 ± 0.64 µg/mL and 164.78 ± 1.40 µg/mL. The combination of Eav and Gem at IC50 (1:1) has the strongest activity than Eav and Gem alone at 500.00 µg/mL. The anti-cancer effect of this combination showed significantly increased levels of apoptosis, particularly in the early phase of 17.46 ± 0.35 % (p < 0.0001) than Eav and Gem alone of 7.76 ± 0.25 % and 7.06 ± 0.20 %. A similar impact was evaluated in the migration and invasion of PANC-1 cells after the combination treatment. The % relative migration and cell invasion were significantly decreased compared to the control group and Eav or Gem alone by 21.49 ± 0.96 % and 125.25 ± 5.25 cells, respectively (p < 0.0001). This study found that signature molecules of VEGF, COX2, RAS, and MEK were down-regulated after treatment. Our study suggested that the Eav ameliorates the Gem effect against PANC-1 cells through apoptosis, migration, and invasion influence via RAS/MEK pathways.

10.
Diagnostics (Basel) ; 13(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37998542

ABSTRACT

The American Joint Committee on Cancer (AJCC) 8th edition T-staging system for distal cholangiocarcinoma (DCC) proposes classification according to the depth of invasion (DOI); nevertheless, DOI measurement is complex and irreproducible. This study focused on the fibromuscular layer and evaluated whether the presence or absence of penetrating fibromuscular invasion of DCC contributes to recurrence and prognosis. In total, 55 patients pathologically diagnosed with DCC who underwent surgical resection from 2002 to 2022 were clinicopathologically examined. Subserosal layer and/or pancreatic (SS/Panc) invasion, defined as penetration of the fibromuscular layer and invasion of the subserosal layer or pancreas by the cancer, was assessed with other clinicopathological prognostic factors to investigate recurrence and prognostic factors. According to the AJCC 8th edition, there were 11 T1, 28 T2, and 16 T3 cases, with 44 (80%) cases of SS/Panc invasion. The DOI was not significantly different for both recurrence and prognostic factors. In the multivariate analysis, only SS/Panc was identified as an independent factor for prognosis (hazard ratio: 16.1; 95% confidence interval: 2.1-118.8, p = 0.006). In conclusion, while the determination of DOI in DCC does not accurately reflect recurrence and prognosis, the presence of SS/Panc invasion may contribute to the T-staging system.

11.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811784

ABSTRACT

Pancreatic cancer, known as the "silent killer," poses a daunting challenge in cancer therapy. The dysregulation of the PI3Kα signaling pathway in pancreatic cancer has attracted considerable interest as a promising target for therapeutic intervention. In this regard, the use of curcumin derivatives as inhibitors of PI3Kα has emerged, providing a novel and promising avenue for developing effective treatments for this devastating disease. Computational approaches were employed to explore this potential and investigate 58 curcumin derivatives with cytotoxic activity against the Panc-1 cell line. Our approach involved ligand-based pharmacophore modeling and atom-based 3D-QSAR analysis. The resulting QSAR model derived from the best-fitted pharmacophore hypothesis (AAHRR_1) demonstrated remarkable performance with high correlation coefficients (R2) of 0.990 for the training set and 0.977 for the test set. The cross-validation coefficient (Q2) of 0.971 also validated the model's predictive power. Tropsha's recommended criteria, including the Y-randomization test, were employed to ensure its reliability. Furthermore, an enrichment study was conducted to evaluate the model's performance in identifying active compounds. AAHRR_1 was used to screen a curated PubChem database of curcumin-related compounds. Two molecules (CID156189304 and CID154728220) exhibited promising pharmacokinetic properties and higher docking scores than Alpelisib, warranting further investigation. Extensive molecular dynamics simulations provided crucial insights into the conformational dynamics within the binding site, validating their stability and behavior. These findings contribute to our understanding of the potential therapeutic effectiveness of these compounds as PI3Kα inhibitors in pancreatic cancer.Communicated by Ramaswamy H. Sarma.

12.
Molecules ; 28(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894684

ABSTRACT

Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. In this study, we investigate the potential therapeutic efficacy of elaiophylin, a novel compound, in targeting BxPC-3 and PANC-1 pancreatic cancer cells. We comprehensively explore elaiophylin's impact on apoptosis induction, proliferation inhibition, migration suppression, invasion attenuation, and angiogenesis inhibition, key processes contributing to cancer progression and metastasis. The results demonstrate that elaiophylin exerts potent pro-apoptotic effects, inducing a substantial increase in apoptotic cells. Additionally, elaiophylin significantly inhibits proliferation, migration, and invasion of BxPC-3 and PANC-1 cells. Furthermore, elaiophylin exhibits remarkable anti-angiogenic activity, effectively disrupting tube formation in HUVECs. Moreover, elaiophylin significantly inhibits the Wnt/ß-Catenin signaling pathway. Our findings collectively demonstrate the multifaceted potential of elaiophylin as a promising therapeutic agent against pancreatic cancer via inhibition of the Wnt/ß-Catenin signaling pathway. By targeting diverse cellular processes crucial for cancer progression, elaiophylin emerges as a prospective candidate for future targeted therapies. Further investigation of the in vivo efficacy of elaiophylin is warranted, potentially paving the way for novel and effective treatment approaches in pancreatic cancer management.


Subject(s)
Apoptosis , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Wnt Signaling Pathway , Cell Proliferation , Cell Movement , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms
13.
Chem Biodivers ; 20(9): e202300280, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612242

ABSTRACT

Pancreatic cancer is a highly aggressive form of cancer with a poor prognosis, partly due to 'austerity', a phenomenon of tolerance to nutrient deprivation and survival in its hypovascular tumor microenvironment. Anti-austerity agents which preferentially diminish the survival of cancer cells under nutrition starvation is regarded as new generation anti-cancer agents. This study investigated the potential of Piper longum constituents as anti-austerity agents. The ethanolic extract of Piper longum was found to have preferential cytotoxicity towards PANC-1 human pancreatic cancer cells in a nutrient-deprived medium (NDM). Further investigation led to the identification of pipernonaline (3) as the lead compound with the strongest anti-austerity activity, inducing cell death and inhibiting migration in a normal nutrient medium, as well as strongly inhibiting the Akt/mTOR/autophagy pathway. Therefore, pipernonaline (3) holds promise as a novel antiausterity agent for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Pancreatic Neoplasms , Piper , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Cell Death , Cell Line, Tumor , Drug Screening Assays, Antitumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
14.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571089

ABSTRACT

3D bioprinting involves using bioinks that combine biological and synthetic materials. The selection of the most appropriate cell-material combination for a specific application is complex, and there is a lack of consensus on the optimal conditions required. Plasma-loaded alginate and alginate/methylcellulose (Alg/MC) inks were chosen to study their viscoelastic behaviour, degree of recovery, gelation kinetics, and cell survival after printing. Selected inks showed a shear thinning behavior from shear rates as low as 0.2 s-1, and the ink composed of 3% w/v SA and 9% w/v MC was the only one showing a successful stacking and 96% recovery capacity. A 0.5 × 106 PANC-1 cell-laden bioink was extruded with an Inkredible 3D printer (Cellink) through a D = 410 µm tip conical nozzle into 6-well culture plates. Cylindrical constructs were printed and crosslinked with CaCl2. Bioinks suffered a 1.845 Pa maximum pressure at the tip that was not deleterious for cellular viability. Cell aggregates can be appreciated for the cut total length observed in confocal microscopy, indicating a good proliferation rate at different heights of the construct, and suggesting the viability of the selected bioink PANC-1/P-Alg3/MC9 for building up three-dimensional bioprinted pancreatic tumor constructs.

15.
Tissue Cell ; 84: 102160, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482027

ABSTRACT

One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.


Subject(s)
Mesenchymal Stem Cells , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases/metabolism , Up-Regulation , Down-Regulation , Secretome , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Apoptosis , Autophagy/genetics , Mesenchymal Stem Cells/metabolism , Cell Line, Tumor , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
16.
Mol Oncol ; 17(11): 2415-2431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37341059

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of cancers. Attempts to develop targeted therapies still need to be established. Some oncogenic mechanisms in PDAC carcinogenesis harness the EGFR/ERBB receptor family. To explore the effects on pancreatic lesions, we attempted simultaneous blockade of all ERBB ligands in a PDAC mouse model. To this end, we engineered a molecular decoy, TRAP-FC , comprising the ligand-binding domains of both EGFR and ERBB4 and able to trap all ERBB ligands. Next, we generated a transgenic mouse model (CBATRAP/0 ) expressing TRAP-FC ubiquitously under the control of the chicken-beta-actin promoter and crossed these mice with KRASG12D/+ mice (Kras) to generate Trap/Kras mice. The resulting mice displayed decreased emergence of spontaneous pancreatic lesion areas and exhibited reduced RAS activity and decreased activities of ERBBs, with the exception of ERBB4, which showed increased activity. To identify the involved receptor(s), we employed CRISPR/Cas9 DNA editing to singly delete each ERBB receptor in the human pancreatic carcinoma cell line Panc-1. Ablation of each ERBB family member, especially the loss of EGFR or ERBB2/HER2, altered signaling downstream of the other three ERBB receptors and decreased cell proliferation, migration, and tumor growth. We conclude that simultaneously blocking the entire ERBB receptor family is therapeutically more effective than individually inhibiting only one receptor or ligand in terms of reducing pancreatic tumor burden. In summary, trapping all ERBB ligands can reduce pancreatic lesion area and RAS activity in a murine model of pancreatic adenocarcinoma; hence, it might represent a promising approach to treat PDAC in patients.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Ligands , Mice, Inbred CBA , Mice, Transgenic , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, ErbB-4/metabolism , Pancreatic Neoplasms
17.
Toxicon ; 231: 107179, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37321408

ABSTRACT

Pancreatic cancer has a poor prognosis and is an important public health problem for developing countries. Oxidative stress plays an important role in cancer initiation, progression, proliferation, invasion, angiogenesis and metastasis. For this reason, one of the important strategic targets of new cancer therapeutics is to drive cancer cells into apoptosis through oxidative stress. In nuclear and mitochondrial DNA, 8-hydroxy-2'-deoxyguanosine and gamma-H2AX (γ-H2AX) are used as important oxidative stress biomarkers. Fusaric acid (FA) is a mycotoxin that mediates toxicity produced by Fusarium species and exhibits anticancer effects in various cancers via inducing apoptosis, cell cycle arrest, or other cellular mechanisms. The aim of this study was to determine the effects of fusaric acid on cytotoxic and oxidative damage in MIA PaCa-2 and PANC-1 cell lines. In this context, dose and time dependent cytotoxic effect of fusaric acid was determined by XTT method, mRNA expression levels of genes related to DNA repair were determined by RT-PCR, and its effect on 8-hydroxy-2'-deoxyguanosine and γ-H2AX levels was revealed by ELISA assay. According to XTT results, fusaric acid inhibits cell proliferation in MIA PaCa-2 and Panc-1 cells in a dose- and time-dependent manner. IC50 doses were determined as 187.74 µM at 48 h in MIA PaCa-2 cells and 134.83 µM at 48 h in PANC-1 cells, respectively. γ-H2AX and 8-OHdG changes were not found significant in pancreatic cancer cells. The mRNA expression levels of DNA repair-related genes NEIL1, OGG1, XRCC and Apex-1 change with exposure to fusaric acid. This study contributes to the therapeutic approaches to be developed for pancreatic cancer and demonstrates the potential of fusaric acid as an anticancer agent.

18.
Biomedicines ; 11(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37371811

ABSTRACT

Pancreatic cancer is one of the most aggressive forms of cancer and is the seventh leading cause of cancer deaths worldwide. Pancreatic ductal adenocarcinoma (PDAC) accounts for over 90% of pancreatic cancers. Most pancreatic cancers are recalcitrant to radiation, chemotherapy, and immunotherapy, highlighting the urgent need for novel treatment options for this deadly disease. To this end, we screened a library of kinase inhibitors in the PDAC cell lines PANC-1 and BxPC-3 and identified two highly potent molecules: Aurora kinase inhibitor AT 9283 (AT) and EGFR kinase inhibitor WZ 3146 (WZ). Both AT and WZ exhibited a dose-dependent inhibition of viability in both cell lines. Thus, we conducted an in-depth multilevel (cellular, molecular, and proteomic) analysis with AT and WZ in PANC-1 cells, which harbor KRAS mutation and exhibit quasimesenchymal properties representing pancreatic cancer cells as having intrinsic chemoresistance and the potential for differential response to therapy. Elucidation of the molecular mechanism of action of AT and WZ revealed an impact on the programmed cell death pathway with an increase in apoptotic, multicaspase, and caspase 3/7 positive cells. Additionally, the key survival molecule Bcl-2 was impacted. Moreover, cell cycle arrest was observed with both kinase inhibitors. Additionally, an increase in superoxide radicals was observed in the AT-treated group. Importantly, proteomic profiling revealed differentially regulated key entities with multifaceted effects, which could have a deleterious impact on PDAC. These findings suggest potential targets for efficacious treatment, including a possible increase in the efficacy of immunotherapy using PD-L1 antibody due to the upregulation of lactoferrin and radixin. Furthermore, combination therapy outcomes with gemcitabine/platinum drugs may also be more effective due to an increase in the NADH dehydrogenase complex. Notably, protein-protein interaction analysis (STRING) revealed possible enrichment of reactome pathway entities. Additionally, novel therapy options, such as vimentin-antibody--drug conjugates, could be explored. Therefore, future studies with the two kinases as monotherapy/combination therapy are warranted.

19.
Metabolites ; 13(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367849

ABSTRACT

Pereskia aculeata Miller, is an unconventional food plant native to South America. This study aimed to investigate the influence of different ultrasonic extraction times (10, 20, 30, and 40 min) on the phytochemical profile, antioxidant and antibacterial activities of ethanolic extracts obtained from lyophilized Pereskia aculeate Miller (ora-pro-nobis) leaves, an under-researched plant. Morphological structure and chemical group evaluations were also conducted for the lyophilized P. aculeate leaves. The different extraction times resulted in distinct phenolic content and Antioxidant Activity (ATT) values. Different extraction time conditions resulted in phenolic compound contents ranging from 2.07 to 2.60 mg EAG.g-1 of extract and different ATT values. The ATT evaluated by DPPH was significantly higher (from 61.20 to 70.20 µM of TE.g-1 of extract) in extraction times of 30 and 40 min, respectively. For ABTS, it varied between 6.38 and 10.24 µM of TE.g-1 of extract and 24.34 and 32.12 µM ferrous sulp.g-1 of extract. All of the obtained extracts inhibited the growth of Staphylococcus aureus, particularly the treatment employing 20 min of extraction at the highest dilution (1.56 mg.mL-1). Although liquid chromatography analyses showed that chlorogenic acid was the primary compound detected for all extracts, Paper Spray Mass Spectrometry (PS-MS) suggested the extracts contained 53 substances, such as organic, fatty, and phenolic acids, sugars, flavonoids, terpenes, phytosterols, and other components. The PS-MS proved to be a valuable technique to obtain the P. aculeate leaves extract chemical profile. It was observed that the freeze-drying process enhanced the conservation of morphological structures of P. aculeate leaves, as evidenced by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) identified carboxyl functional groups and proteins between the 1000 and 1500 cm-1 bands in the P. aculeate leaves, thus favoring water interaction and contributing to gel formation. To the best of our knowledge, this is the first study to evaluate different times (10, 20, 30 and 40 min) for ultrasound extraction of P. aculeate leaves. The polyphenols improved extraction, and high antioxidant activity demonstrates the potential for applying P. aculeate leaves and their extract as functional ingredients or additives in the food and pharmaceutical industries.

20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 558-564, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37248584

ABSTRACT

Objective: To investigate the effects and mechanisms of zinc finger E-box binding homeobox transcription factor-2 ( ZEB2) on the proliferation, colony formation, migration, and invasion abilities and the epithelial-mesenchymal transition (EMT) of PANC-1 cells, a human pancreatic cancer cell line. Methods: Data on the expression of ZEB2 in pancreatic cancer tissues and paracancerous tissues from The Cancer Genome Atlas (TCGA) database were analyzed. PANC-1 pancreatic cancer cells were divided into si-NC group, si- ZEB2 group, pcDNA3.1 group, and pcDNA3.1- ZEB2 group. qRT-PCR and Western blot were conducted to confirm the effectiveness of ZEB2 knockdown or overexpression. CCK-8, colony formation, wound healing, and Transwell assays were conducted to examine the effects of ZEB2 on the proliferation, colony formation, migration, and invasion of PANC-1 cells. qRT-PCR and immunofluorescence assays were performed to examine the expression of E-cadherin and vimentin, the EMT markers, in the cells. Prediction of proteins interacting with ZEB2 was made through the STRING database. Results: TCGA database analysis showed that the expression level of ZEB2 in pancreatic cancer tissues was significantly higher than that in adjacent tissues ( P<0.05). Compared with those of cells in the control group, the proliferation, colony formation, migration, and invasion of cells in the si- ZEB2 group were decreased ( P<0.05). Compared with those of cells in the pcDNA3.1 group, the proliferation, colony formation, migration and invasion of cells in the pcDNA3.1- ZEB2 group were increased (all P<0.05). According to the results of qRT-PCR and immunofluorescence assays, compared with those of the si-NC group, the expression of E-cadherin mRNA, an epithelial marker, in the si- ZEB2 group increased, while the expression of vimentin mRNA, an mesenchymal marker, and the protein decreased. Compared with those of the pcDNA3.1 group, the expression of E-cadherin mRNA in the PANC-1 cells of the pcDNA3.1- ZEB2 group decreased, while the expression of vimentin mRNA and the protein increased (all P<0.05). Analysis with the STRING database predicted that 10 proteins had close interaction with ZEB2. Conclusion: Overexpression of ZEB2 promotes the migration, invasion, and the EMT process of PANC-1 pancreatic cancer cells.


Subject(s)
Apoptosis , Pancreatic Neoplasms , Humans , Vimentin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement , Apoptosis/genetics , Cadherins/genetics , Cadherins/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...