Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.410
Filter
1.
Cell Rep ; 43(7): 114464, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38985669

ABSTRACT

Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.

2.
Cell Rep ; 43(7): 114433, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985679

ABSTRACT

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.

4.
Cancer Diagn Progn ; 4(4): 447-453, 2024.
Article in English | MEDLINE | ID: mdl-38962556

ABSTRACT

Background/Aim: Olaparib, a poly (ADP-ribose) polymerase inhibitor, is widely used as maintenance therapy for ovarian cancer. Dose modification, such as dose reduction and treatment interruption, are frequently performed to manage adverse events (AEs) of olaparib. By identifying patients at high risk for dose modification before administration, interventions related to appropriate control of AEs can be implemented. This study aimed to evaluate risk factors of olaparib dose modification and its clinical usefulness. Patients and Methods: Sixty patients with ovarian cancer who received olaparib were included in this retrospective cohort study. Associations between patients' characteristics and dose modification were evaluated by multivariate logistic regression analysis. We also examined whether risk factors of dose modification were associated with treatment discontinuation due to AEs. Results: Twenty-five (41.7%) patients required dose modification. Patients who required dose modification were significantly older (p=0.018) and tended to be more underweight (p=0.078) than those who did not require dose modification. In multivariate analysis, increasing age was significantly associated with dose modification (odds ratio=1.056; 95% confidence interval=1.002-1.112; p=0.034). The optimal cutoff of age as a risk factor for dose modification, calculated from receiver operating characteristic curves, was 65.0 years. Patients aged 65.0 years and older were significantly more likely to discontinue olaparib owing to AEs (p=0.0437). Conclusion: Age is a risk factor of olaparib dose modification due to AEs. Older patients, who frequently require dose modification, are more likely to discontinue olaparib, suggesting that strict management of AEs is particularly necessary in this patient group.

5.
Immunobiology ; 229(5): 152833, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38963996

ABSTRACT

Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized in-vitro the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 µg/ml, 48 h) and challenged with LPS (5 µg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.

6.
J Asian Nat Prod Res ; : 1-14, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958645

ABSTRACT

Breast cancer is the most common malignant tumor and a major cause of mortality among women worldwide. Atramacronoid A (AM-A) is a unique natural sesquiterpene lactone isolated from the rhizome of Atractylodes macrocephala Koidz (known as Baizhu in Chinese). Our study demonstrated that AM-A triggers a specific form of cell death resembling PANoptosis-like cell death. Further analysis indicated that AM-A-induced PANoptosis-like cell death is associated with the CASP-3/PARP-GSDMD-MLKL pathways, which are mediated by mitochondrial dysfunction. These results suggest the potential of AM-A as a lead compound and offer insights for the development of therapeutic agents for breast cancer from natural products.

7.
Cancer Treat Rev ; 129: 102798, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38970838

ABSTRACT

Small-cell lung cancer (SCLC), accounting for 10-20 % of all lung tumors, represents the most aggressive high-grade neuroendocrine carcinoma. Most patients are diagnosed with extensive-stage SCLC (ES-SCLC), with brian metastases identified in âˆ¼ 80 % of cases during the disease cours, and the prognosis is dismal, with a 5-year survival rate of less than 5 %. Current available treatments in the second-line setting are limited, and topotecan has long been the only FDA-approved drug in relapsed or refractory ES-SCLC, until the recent approval of lurbinectedin, a selective inhibitor of RNA polymerase II. Temozolomide (TMZ) is an oral alkylating agent, which showed single-agent activity in SCLC, particularly among patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. Several studies have revealed the synergistic activity of temozolomide with poly-ADP-ribose polymerase (PARP) inhibitors, that prevent repair of TMZ-induced DNA damage. This review focuses on the rationale for the use of TMZ in ES-SCLC and provides an overview of the main trials that have evaluated and are currently investigating its role, both as a single-agent and in combinations, in relapse or refractory disease.

8.
Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38971151

ABSTRACT

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

9.
Expert Opin Drug Saf ; : 1-9, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38967020

ABSTRACT

BACKGROUND: Current clinical trial data on PARP inhibitors (PARPis)-related acute renal failure (ARF) are not entirely representative of real-world situations. Therefore, in this study, the US Food and Drug Administration Adverse Event Reporting System (FAERS) was used to evaluate PARPis-related ARF. RESEARCH DESIGN AND METHODS: Data were obtained from 1 January 2015, to 30 September 2023. ARF event reports were analyzed based on four algorithms. The time-to-onset (TTO) and clinical outcomes of PARPis-associated ARF were assessed. RESULTS: The total included cases were 2726. Significant signals were observed for olaparib, niraparib, and rucaparib (reporting odds ratio (ROR): 1.62, 95% confidence interval (CI): 1.49-1.78, 1.25, 95% CI: 1.19-1.32 and 1.59, 95% CI: 1.47-1.72 respectively). The median TTO of ARF onset was 57, 36, and 85 days for olaparib, niraparib, and rucaparib, respectively. The proportion of deaths with olaparib (9.88%) was significantly higher than for niraparib (2.52%) and rucaparib (2.94%) (p < 0.005). The proportion of life-threatening adverse events associated with niraparib (4.89%) was significantly higher than for rucaparib (0.98%) (p < 0.005). CONCLUSIONS: ARF and PARPi were related, with the exception of talazoparib. More emphasis should be given to PARPis-related ARF due to the high proportion of serious AEs and delayed adverse reactions.

10.
Adv Sci (Weinh) ; : e2400140, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973255

ABSTRACT

Most clinical PARP inhibitors (PARPis) trap PARP1 in a chromatin-bound state, leading to PARPi-mediated cytotoxicity. PARPi resistance impedes the treatment of ovarian cancer in clinical practice. However, the mechanism by which cancer cells overcome PARP1 trapping to develop PARPi resistance remains unclear. Here, it is shown that high levels of KAT6A promote PARPi resistance in ovarian cancer, regardless of its catalytic activity. Mechanistically, the liquid-liquid phase separation (LLPS) of KAT6A, facilitated by APEX1, inhibits the cytotoxic effects of PARP1 trapping during PARPi treatment. The stable KAT6A-PARP1-APEX1 complex reduces the amount of PARP1 trapped at the DNA break sites. In addition, inhibition of KAT6A LLPS, rather than its catalytic activity, impairs DNA damage repair and restores PARPi sensitivity in ovarian cancer both in vivo and in vitro. In conclusion, the findings demonstrate the role of KAT6A LLPS in fostering PARPi resistance and suggest that repressing KAT6A LLPS can be a potential therapeutic strategy for PARPi-resistant ovarian cancer.

11.
Front Pharmacol ; 15: 1416555, 2024.
Article in English | MEDLINE | ID: mdl-38948462

ABSTRACT

Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.

12.
EMBO Mol Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956205

ABSTRACT

Acquired resistance to PARP inhibitors (PARPi) remains a treatment challenge for BRCA1/2-mutant breast cancer that drastically shortens patient survival. Although several resistance mechanisms have been identified, none have been successfully targeted in the clinic. Using new PARPi-resistance models of Brca1- and Bard1-mutant breast cancer generated in-vivo, we identified FLT1 (VEGFR1) as a driver of resistance. Unlike the known role of VEGF signaling in angiogenesis, we demonstrate a novel, non-canonical role for FLT1 signaling that protects cancer cells from PARPi in-vivo through a combination of cell-intrinsic and cell-extrinsic pathways. We demonstrate that FLT1 blockade suppresses AKT activation, increases tumor infiltration of CD8+ T cells, and causes dramatic regression of PARPi-resistant breast tumors in a T-cell-dependent manner. Moreover, PARPi-resistant tumor cells can be readily re-sensitized to PARPi by targeting Flt1 either genetically (Flt1-suppression) or pharmacologically (axitinib). Importantly, a retrospective series of breast cancer patients treated with PARPi demonstrated shorter progression-free survival in cases with FLT1 activation at pre-treatment. Our study therefore identifies FLT1 as a potential therapeutic target in PARPi-resistant, BRCA1/2-mutant breast cancer.

13.
FASEB J ; 38(13): e23775, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967223

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.


Subject(s)
Colitis , Dextran Sulfate , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerases , Animals , Mice , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/deficiency , Humans , Dextran Sulfate/toxicity , Mice, Knockout , Colon/pathology , Colon/metabolism , Male , Disease Models, Animal , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Female , Gastrointestinal Microbiome
14.
Curr Oncol Rep ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822929

ABSTRACT

PURPOSE OF REVIEW: Homologous recombination repair deficiency (HRD) increases breast cancer susceptibility and influences both prophylactic and active management of breast cancer. This review evaluates HRD testing and the therapeutic implications of HRD in a global context. RECENT FINDINGS: Ongoing research efforts have highlighted the importance of HRD beyond BRCA1/2 as a potential therapeutic target in breast cancer. However, despite the improved affordability of next-generation sequencing (NGS) and the discovery of PARP inhibitors, economic and geographical barriers in access to HRD testing and breast cancer screening do not allow all patients to benefit from the personalized treatment approach they provide. Advancements in HRD testing modalities and targeted therapeutics enable tailored breast cancer management. However, inequalities in access to testing and optimized treatments are contributing to widening health disparities globally.

15.
DNA Repair (Amst) ; 140: 103690, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38823186

ABSTRACT

DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.

16.
Eur Urol Oncol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824003

ABSTRACT

BACKGROUND AND OBJECTIVE: Metastatic prostate cancer (mPCa) harbors genomic alterations that may predict targeted therapy efficacy. These alterations can be identified not only in tissue but also directly in biologic fluids (ie, liquid biopsies), mainly blood. Liquid biopsies may represent a safer and less invasive alternative for monitoring patients treated for mPCa. Current research focuses on the description and validation of novel predictive biomarkers to improve precision medicine in mPCa. Our aim was to systematically review the current evidence on liquid biopsy biomarkers for predicting treatment response in mPCa. METHODS: We systematically searched Medline, Web of Science, and evidence-based websites for publications on circulating biomarkers in mPCa between March 2013 and February 2024 for review. Endpoints were: prediction of overall survival, biochemical or radiographic progression-free survival after treatment (chemotherapy, androgen deprivation therapy, androgen receptor pathway inhibitors [ARPIs], immunotherapy, or PARP inhibitors [PARPIs]). For each biomarker, the level of evidence (LOE) for clinical validity was attributed: LOE IA and IB, high level of evidence; LOE IIB and IIC, intermediate level; and LOE IIIC and LOE IV-VD, weak level. KEY FINDINGS AND LIMITATIONS: The predictive value of each biomarker for the response to several therapies was evaluated in both metastatic hormone-sensitive (mHSPC) and castration-resistant prostate cancer (mCRPC). In patients with mCRPC, BRCA1/2 or ATM mutations predicted response to ARPIs (LOE IB) and PARPIs (LOE IIB), while AR-V7 transcripts or AR-V7 protein levels in circulating tumor cells (CTCs) predicted response to ARPIs and taxanes (LOE IB). CTC quantification predicted response to cabazitaxel, abiraterone, and radium-223 (LOE IIB), while TP53 alterations predicted response to 177Lu prostate-specific membrane antigen radioligand treatment (LOE IIB). AR copy number in circulating tumor DNA before the first treatment line and before subsequent lines predicted response to docetaxel, cabazitaxel, and ARPIs (LOE IIB). In mHSPC, DNA damage in lymphocytes was predictive of the response to radium-223 (LOE IIB). CONCLUSIONS AND CLINICAL IMPLICATIONS: BRCA1/2, ATM, and AR alterations detected in liquid biopsies may help clinicians in management of patients with mPCa. The other circulating biomarkers did not reach the LOE required for routine clinical use and should be validated in prospective independent studies. PATIENT SUMMARY: We reviewed studies assessing the value of biomarkers in blood or urine for management of metastatic prostate cancer. The evidence indicates that some biomarkers could help in selecting patients eligible for specific treatments.

17.
Drug Dev Ind Pharm ; 50(6): 561-575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832870

ABSTRACT

INTRODUCTION: Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE: Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS: CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS: The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS: Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.


Subject(s)
Apoptosis , Breast Neoplasms , DNA Damage , Hyperthermia, Induced , Liposomes , Quercetin , Humans , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , MCF-7 Cells , Apoptosis/drug effects , Hyperthermia, Induced/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , DNA Damage/drug effects , Cobalt/chemistry , Cobalt/administration & dosage , Cobalt/pharmacology , Female , Ferric Compounds/chemistry , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Cell Survival/drug effects , Magnetic Fields
18.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892377

ABSTRACT

Aging, marked by a gradual decline in physiological function and heightened vulnerability to age-related diseases, remains a complex biological process with multifaceted regulatory mechanisms. Our study elucidates the critical role of poly(ADP-ribose) glycohydrolase (PARG), responsible for catabolizing poly(ADP-ribose) (pADPr) in the aging process by modulating the expression of age-related genes in Drosophila melanogaster. Specifically, we uncover the regulatory function of the uncharacterized PARG C-terminal domain in controlling PARG activity. Flies lacking this domain exhibit a significantly reduced lifespan compared to wild-type counterparts. Furthermore, we observe progressive dysregulation of age-related gene expression during aging, accelerated in the absence of PARG activity, culminating in a premature aging phenotype. Our findings reveal the critical involvement of the pADPr pathway as a key player in the aging process, highlighting its potential as a therapeutic target for mitigating age-related effects.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Glycoside Hydrolases , Longevity , Animals , Longevity/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Aging/genetics , Aging/metabolism , Gene Expression Regulation , Poly Adenosine Diphosphate Ribose/metabolism
19.
Pathol Res Pract ; 260: 155432, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38944022

ABSTRACT

BACKGROUND: Usual Interstitial Pneumonia (UIP) a fibrosing pneumonia is associated with idiopathic pulmonary fibrosis, chronic autoimmune disease (AID), or hypersensitivity pneumonia. Oxygen radicals, due to tobacco smoke, can damage DNA and might upregulate PARP1. Cytosolic DNA from dying pneumocytes activate cytosolic GMP-AMP-synthase-stimulator of interferon genes (cGAS-STING) pathway and TREX1. Prolonged inflammation induces senescence, which might be inhibited by phagocytosis, eliminating nuclear debris. We aimed to evaluate activation of cGAS-STING-TREX1 pathway in UIP, and if phagocytosis and anti-phagocytosis might counteract inflammation. METHODS: 44 cases of UIP with IPF or AID were studied for the expression of cGAS, pSTING, TREX1 and PARP1. LAMP1 and Rab7 expression served as phagocytosis markers. CD47 protecting phagocytosis and p16 to identify senescent cells were also studied. RESULTS: Epithelial cells in remodeled areas and macrophages expressed cGAS-pSTING, TREX1; epithelia but not macrophages stained for PARP1. Myofibroblasts, endothelia, and bronchial/bronchiolar epithelial cells were all negative except early myofibroblastic foci expressing cGAS. Type II pneumocytes expressed cGAS and PARP1, but less pSTING. TREX1 although expressed was not activated. Macrophages and many regenerating epithelial cells expressed LAMP1 and Rab7. CD47, the 'don't-eat-me-signal', was expressed by macrophages and epithelial cells including senescence cells within the remodeled areas. CONCLUSIONS: The cGAS-STING pathway is activated in macrophages and epithelial cells within remodeled areas. LikelyTREX1 because not activated cannot sufficiently degrade DNA fragments. PARP1 activation points to smoking-induced oxygen radical release, prolonging inflammation and leading to fibrosis. By expressing CD47 epithelial cells within remodeled areas protect themselves from being eliminated by phagocytosis.

20.
J Clin Med ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929955

ABSTRACT

Including poly(ADP-ribose) polymerase (PARP) inhibitors in managing patients with inoperable tumors has significantly improved outcomes. The PARP inhibitors hamper single-strand deoxyribonucleic acid (DNA) repair by trapping poly(ADP-ribose)polymerase (PARP) at sites of DNA damage, forming a non-functional "PARP enzyme-inhibitor complex" leading to cell cytotoxicity. The effect is more pronounced in the presence of PARP upregulation and homologous recombination (HR) deficiencies such as breast cancer-associated gene (BRCA1/2). Hence, identifying HR-deficiencies by genomic analysis-for instance, BRCA1/2 used in triple-negative breast cancer-should be a part of the selection process for PARP inhibitor therapy. Published data suggest BRCA1/2 germline mutations do not consistently predict favorable responses to PARP inhibitors, suggesting that other factors beyond tumor mutation status may be at play. A variety of factors, including tumor heterogeneity in PARP expression and intrinsic and/or acquired resistance to PARP inhibitors, may be contributing factors. This justifies the use of an additional tool for appropriate patient selection, which is noninvasive, and capable of assessing whole-body in vivo PARP expression and evaluating PARP inhibitor pharmacokinetics as complementary to the currently available BRCA1/2 analysis. In this review, we discuss [18F]Fluorine PARP inhibitor radiotracers and their potential in the imaging of PARP expression and PARP inhibitor pharmacokinetics. To provide context we also briefly discuss possible causes of PARP inhibitor resistance or ineffectiveness. The discussion focuses on TNBC, which is a tumor type where PARP inhibitors are used as part of the standard-of-care treatment strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...