Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 893
Filter
1.
ACS Chem Neurosci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953493

ABSTRACT

Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.

2.
J Environ Radioact ; 278: 107489, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013309

ABSTRACT

As today the 137Cs fallout peak, in sediment cores, corresponds only to 25% of its initial concentration, alternatives to the use of 137Cs as a210Pb sediment dating validation tool are proposed. In highly industrialized bays, such as Guanabara Bay in the Rio de Janeiro metropolitan region, several chemical/compounds from the surrounding industry releases may be applied as validation tools. Chromium and copper profiles in a sediment core adequately fit the expected pattern due to the implementation of a chemical plant in 1958, reaching their maximum discharge in 1982 and subsequently decreasing due to the operation of a new wastewater treatment plant. A diffuse source such, as the PCB-based mixture Askarel, was also applied as an alternative validation tool, and the observed concentration profile reproduced the expected behavior, with increasing concentration after the Second World War and a decrease after the ban of this product in 1981. The observed Aroclor 1254 and 1260 mixture chlorination rates fit the most widely distributed PCB-based products in the country.

3.
J Agric Food Chem ; 72(28): 15643-15652, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967173

ABSTRACT

Gas chromatography with electron capture negative ion mass spectrometry (GC/ECNI-MS) was used to quantify and compare halogenated natural products (HNPs) and selected anthropogenic persistent organic pollutants (POPs) in individual samples of 17 fish species from the Seychelles (Western Indian Ocean). The sum-HNP amounts (9.5-1100 ng/g lipid mass (lm)) were between 1 and 2 orders of magnitude higher than those of the sum of seven abundant polychlorinated biphenyl (PCB) congeners (0.2-15 ng/g lm) and dichlorodiphenyltrichloroethane-related compounds (DDTs) (<1.1-43 ng/g lm). Within the group of HNPs, the two tetrabrominated phenoxyanisoles (aka methoxylated diphenyl ethers, MeO-BDEs), 2'-MeO-BDE 68 ≫ 6-MeO-BDE 47, were predominant in most cases. Pearson correlation analysis showed that MeO-BDE levels were positively correlated with less abundant HNPs (2,2'-diMeO-BB 80, 2',6-diMeO-BDE 68, and Br6-DBP) (p < 0.01). Accordingly, HNPs, rather than PCBs and DDTs, were the predominant polyhalogenated contaminants in the current species.


Subject(s)
Biological Products , Fishes , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Fishes/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Biological Products/metabolism , Biological Products/chemistry , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/chemistry , Indian Ocean , Seychelles , Bioaccumulation , Gas Chromatography-Mass Spectrometry , Coral Reefs
4.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001141

ABSTRACT

Electronic components are the main components of PCBs (printed circuit boards), so the detection and classification of ECs (electronic components) is an important aspect of recycling used PCBs. However, due to the variety and quantity of ECs, traditional target detection methods for EC classification still have problems such as slow detection speed and low performance, and the accuracy of the detection needs to be improved. To overcome these limitations, this study proposes an enhanced YOLO (you only look once) network (EC-YOLOv7) for detecting EC targets. The network uses ACmix (a mixed model that enjoys the benefits of both self-attention and convolution) as a substitute for the 3 × 3 convolutional modules in the E-ELAN (Extended ELAN) architecture and implements branch links and 1 × 1 convolutional arrays between the ACmix modules to improve the speed of feature retrieval and network inference. Furthermore, the ResNet-ACmix module is engineered to prevent the leakage of function data and to minimise calculation time. Subsequently, the SPPCSPS (spatial pyramid pooling connected spatial pyramid convolution) block has been improved by replacing the serial channels with concurrent channels, which improves the fusion speed of the image features. To effectively capture spatial information and improve detection accuracy, the DyHead (the dynamic head) is utilised to enhance the model's size, mission, and sense of space, which effectively captures spatial information and improves the detection accuracy. A new bounding-box loss regression method, the WIoU-Soft-NMS method, is finally suggested to facilitate prediction regression and improve the localisation accuracy. The experimental results demonstrate that the enhanced YOLOv7 net surpasses the initial YOLOv7 model and other common EC detection methods. The proposed EC-YOLOv7 network reaches a mean accuracy (mAP@0.5) of 94.4% on the PCB dataset and exhibits higher FPS compared to the original YOLOv7 model. In conclusion, it can significantly enhance high-density EC target recognition.

5.
Sci Rep ; 14(1): 13155, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849386

ABSTRACT

Hepatocellular carcinoma (HCC) stands as the most prevalent form of primary liver cancer, predominantly affecting patients with chronic liver diseases such as hepatitis B or C-induced cirrhosis. Diagnosis typically involves blood tests (assessing liver functions and HCC biomarkers), imaging procedures such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), and liver biopsies requiring the removal of liver tissue for laboratory analysis. However, these diagnostic methods either entail lengthy lab processes, require expensive imaging equipment, or involve invasive techniques like liver biopsies. Hence, there exists a crucial need for rapid, cost-effective, and noninvasive techniques to characterize HCC, whether in serum or tissue samples. In this study, we developed a spiral sensor implemented on a printed circuit board (PCB) technology that utilizes impedance spectroscopy and applied it to 24 tissues and sera samples as proof of concept. This newly devised circuit has successfully characterized HCC and normal tissue and serum samples. Utilizing the distinct dielectric properties between HCC cells and serum samples versus the normal samples across a specific frequency range, the differentiation between normal and HCC samples is achieved. Moreover, the sensor effectively characterizes two HCC grades and distinguishes cirrhotic/non-cirrhotic samples from tissue specimens. In addition, the sensor distinguishes cirrhotic/non-cirrhotic samples from serum specimens. This pioneering study introduces Electrical Impedance Spectroscopy (EIS) spiral sensor for diagnosing HCC and liver cirrhosis in clinical serum-an innovative, low-cost, rapid (< 2 min), and precise PCB-based technology without elaborate sample preparation, offering a novel non-labeled screening approach for disease staging and liver conditions.


Subject(s)
Carcinoma, Hepatocellular , Dielectric Spectroscopy , Liver Neoplasms , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/pathology , Humans , Dielectric Spectroscopy/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/blood , Liver Neoplasms/pathology , Liver/pathology , Biomarkers, Tumor/blood
6.
Waste Manag Res ; : 734242X241257084, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902936

ABSTRACT

The growing amount of electronic waste is a global challenge: on one hand, it poses a threat to the environment as it may contain toxic or hazardous substances, on the other hand it is a valuable 'urban mine' containing metals like gold and copper. Thus, recycling of electronic waste is not only a measure to reduce environmental pollution but also economically reasonable as prices for raw materials are rising. Within electronic waste, printed circuit boards (PCBs) occupy a prominent position, as they contain most of the valuable material. One important step in the overall recycling process is the evaluation and the value estimation for further treatment of the waste PCBs (WPCBs). In this article, we introduce a method for value estimation of entire WPCBs based on component detection. The value of the WPCB is then predicted by the value of the detected components. This approach allows a flexible application to different situations. In the first step, we created a dataset and labelled the components of 104 WPCBs using different component classes. The component detection is performed on dual energy X-ray images by the deep neural object detection network 'YOLO v5'. The dataset is split into a training, validation and test subset and standard performance measures as precision, recall and F1-score of the component detection are evaluated. Representative samples from all component classes were selected and analysed for the valuable materials to provide the ground truth of the value estimation in the subsequent step.

7.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894263

ABSTRACT

In order to improve the efficiency and accuracy of multitarget detection of soldering defects on surface-mounted components in Printed Circuit Board (PCB) fabrication, we propose a sample generation method using Stable Diffusion Model and ControlNet, as well as a defect detection method based on the Swin Transformer. The method consists of two stages: First, high-definition original images collected in industrial production and the corresponding prompts are input to Stable Diffusion Model and ControlNet for automatic generation of nonindependent samples. Subsequently, we integrate Swin Transformer as the backbone into the Cascade Mask R-CNN to improve the quality of defect features extracted from the samples for accurate detection box localization and segmentation. Instead of segmenting individual components on the PCB, the method inspects all components in the field of view simultaneously over a larger area. The experimental results demonstrate the effectiveness of our method in scaling up nonindependent sample datasets, thereby enabling the generation of high-quality datasets. The method accurately recognizes targets and detects defect types when performing multitarget inspection on printed circuit boards. The analysis against other models shows that our improved defect detection and segmentation method improves the Average Recall (AR) by 2.8% and the mean Average Precision (mAP) by 1.9%.

8.
Korean J Physiol Pharmacol ; 28(4): 323-333, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38926840

ABSTRACT

Polychlorinated biphenyls (PCBs) were once used throughout various industries; however, because of their persistence in the environment, exposure remains a global threat to the environment and human health. The Kv1.3 and Kv1.5 channels have been implicated in the immunotoxicity and cardiotoxicity of PCBs, respectively. We determined whether 3,3',4,4'-tetrachlorobiphenyl (PCB77), a dioxin-like PCB, alters human Kv1.3 and Kv1.5 currents using the Xenopus oocyte expression system. Exposure to 10 nM PCB77 for 15 min enhanced the Kv1.3 current by approximately 30.6%, whereas PCB77 did not affect the Kv1.5 current at concentrations up to 10 nM. This increase in the Kv1.3 current was associated with slower activation and inactivation kinetics as well as right-shifting of the steady-state activation curve. Pretreatment with PCB77 significantly suppressed tumor necrosis factor-α and interleukin-10 production in lipopolysaccharide-stimulated Raw264.7 macrophages. Overall, these data suggest that acute exposure to trace concentrations of PCB77 impairs immune function, possibly by enhancing Kv1.3 currents.

9.
Biosens Bioelectron ; 260: 116434, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38810414

ABSTRACT

Aptamer-based electrochemical sensors are frequently used as independent, surface-functionalized, passive electrodes. However, their sensitivity and detection limits become limited, particularly when the electrode area is reduced to facilitate miniaturization. A mobile phone-based microfluidic electrochemical aptamer sensing platform for 3,3',4,4'-tetrachlorobiphenyl (PCB77) detection was developed in this work. This aptamer sensor utilized Exonuclease I (Exo I) and DNA/AuNPs/horseradish peroxidase (DNA/AuNPs/HRP) nanoprobes as a merged signal amplification method, which resulted in an increase in the electrochemical sensing performance. Sensitive detection of PCB77 was accomplished by functionalizing the hierarchically structured Au@MoS2/CNTs/GO modified working/sensing electrode with the specific aptamer. The aptamer sensor was tested with different concentrations of PCB77 within the microfluidic platform. Afterward, the differential pulse voltammograms were recorded using a wireless integrated circuit device. Subsequently, the collected data was transmitted to a smartphone using Bluetooth communication. A detection limit of 0.0085 ng/L was obtained for PCB77 detection, with a detection range from 0.1 to 1000 ng/L. In addition, the detection of PCB77 in spiked water samples validated the possibility of using this aptamer sensor in a real environment, and the aptamer sensor demonstrated high selectivity in distinguishing PCB77 from other potential interfering species. The merging of electrochemical aptamer sensors with purposefully engineered microfluidic and integrated devices in this study is a novel and promising method that provides a dependable platform for on-site applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Polychlorinated Biphenyls , Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Polychlorinated Biphenyls/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Exodeoxyribonucleases/chemistry , Horseradish Peroxidase/chemistry , Nanotubes, Carbon/chemistry , Molybdenum/chemistry , Equipment Design , Water Pollutants, Chemical/analysis , DNA/chemistry , Smartphone
10.
Sci Total Environ ; 933: 173208, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750758

ABSTRACT

In this study, 3,4,3',4'-tetrachlorobiphenyl (PCB77) contaminated soil was remediated by a fluidization bed dielectric barrier discharge (DBD) reactor and a fixed bed DBD reactor. The fluidized bed reactor could attain superior removal efficiency of PCB77 under same experimental parameters. In-situ discharge mode was more conducive to the degradation of PCB77 than ex-situ discharge mode due to short-lived active species existing in in-situ discharge. The influence of experimental parameters in the fluidized bed DBD reactor on the degradation of PCB77 were discussed such as electric features, gas features, soil features and initial PCB77 concentration. PCB77 removal efficiency in air discharge could reach 88.5 % after 8 min under the alkaline condition. Optical emission spectroscopy (OES) and quench tests showed that reactive oxygen species (ROS) and reactive nitrogen species (RNS) were generated in the discharge system and they both played a vital role in the degradation of PCB77. Scanning electron microscopy (SEM) results demonstrated that discharge had little effect on the morphology of soil particles. Energy dispersive spectrometer (EDS), ion chromatography (IC), and total organic carbon (TOC) results showed that the DBD could effectively mineralize and dechlorinate PCB77. The possible degradation pathway of PCB77 was inferred at the end based on the degradation products determined by gas chromatography-mass spectrometry (GC-MS).

11.
Sci Total Environ ; 935: 173334, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38763191

ABSTRACT

Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.


Subject(s)
Biodegradation, Environmental , Electronic Waste , Microplastics , Penicillium , Penicillium/metabolism , Microplastics/metabolism
12.
Ecotoxicol Environ Saf ; 278: 116419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718726

ABSTRACT

3,3',4,4',5-Pentachlorobiphenyl (PCB126) is the most toxic congener of dioxin-like polychlorinated biphenyls (DL PCBs), while nanoplastics (NPs) have recently emerged as significant marine pollutants, both posing threats to aquatic organisms and human health. They coexist in the environment, but their comprehensive toxicological effects remain unclear. In this study, zebrafish embryos were simultaneously exposed to PCB126 and 80-nanometer nanoplastyrene (NPS). Researchers utilized fluorescence microscopy, qPCR, histopathological examination, and transcriptomic sequencing to investigate the developmental toxicity of different concentrations of PCB126 and NPS individually or in combination on zebrafish embryos and larvae. Results indicate that the chorion significantly impedes the accumulation of NPS (p < 0.05). It is noteworthy that this barrier effect diminishes upon simultaneous exposure to PCB126. In this experiment, the semi-lethal concentration of PCB126 for larvae was determined to be 6.33 µg/L. Exposure to PCB126 induces various deformities, primarily mediated through the aryl hydrocarbon receptor (AHR). Similarly, exposure to NPS also activates AHR, leading to developmental impairments. Furthermore, transcriptomic sequencing revealed similar effects of PCB126 and NPS on the gene expression trends in zebrafish larvae, but combined exposure to both exacerbates the risk of cancer and induces more severe cardiac toxicity. At this level, co-exposure to PCB126 and NPS adversely affects the development of zebrafish larvae. This study contributes to a deeper understanding of the in vivo accumulation of DL polychlorinated biphenyls and microplastics in actual aquatic environments and their impact on fish development.


Subject(s)
Larva , Polychlorinated Biphenyls , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Polychlorinated Biphenyls/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Embryo, Nonmammalian/drug effects , Microplastics/toxicity , Nanoparticles/toxicity
13.
Front Nutr ; 11: 1350146, 2024.
Article in English | MEDLINE | ID: mdl-38779445

ABSTRACT

Polychlorinated biphenyls (PCBs) are lipophilic environmental toxicants. Epidemiological studies have established a link between PCBs and both metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Multiple studies have reported that exposure to both PCB156 and PCB126 among the 12 dioxin-like PCBs leads to the development of NAFLD. However, studies to elucidate whether PCB169 induces the development of NAFLD by constructing in vivo models have not been reported. Therefore, we evaluated the effects of exposure to PCB169 (5 mg/kg-bw) on hepatic lipid metabolism in C57BL/6 mice from control diet and high-fat diet cohorts. The results showed that PCB169 exposure reduced body weight and intraperitoneal fat mass in mice on the control diet, but the liver lipid levels were significantly increased, exacerbating NAFLD in mice on a high-fat diet. Through transcriptomics studies, it was found that PCB169 exposure induced significant up-regulation of Pparγ, Fasn, and Aacs genes involved in hepatic lipogenesis, as well as remarkable up-regulation of Hmgcr, Lss, and Sqle genes involved in cholesterol synthesis. Additionally, there was notable down-regulation of Pparα and Cpt1 genes involved in lipid ß-oxidation, leading to abnormal lipid accumulation in the liver. In addition, we found that PCB169 exposure significantly activated the Arachidonic acid metabolism, PPAR signaling pathway, Metabolism of xenobiotics by cytochrome P450, and Retinol metabolism pathways, and so on. Our study suggests that PCB169 can modify gene expression related to lipid metabolism, augument lipid accumulation in the liver, and further contribute to the development of NAFLD, thereby revealing the detrimental effects associated with PCB exposure on animal growth and metabolism.

14.
Sci Total Environ ; 931: 172911, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705305

ABSTRACT

Breastfeeding provides numerous health benefits for both infants and mothers, promoting optimal growth and development while offering protection against various illnesses and diseases. This study investigated the levels of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP) and polycyclic aromatic hydrocarbons (PAH) in human milk sampled in Zadar (Croatia). The primary objectives were twofold: firstly, to evaluate the individual impact of each compound on the total antioxidant capacity (TAC) value, and secondly, to assess associated health risks. Notably, this study presents pioneering and preliminary insights into PAH levels in Croatian human milk, contributing to the limited research on PAH in breast milk worldwide. PCB and OCP levels in Croatian human milk were found to be relatively lower compared to worldwide data. Conversely, PAH levels were comparatively higher, albeit with lower detection frequencies. A negative correlation was established between organic contaminant levels and antioxidative capacity, suggesting a potential link between higher antioxidative potential and lower organic contaminant levels. Diagnostic ratio pointed towards traffic emissions as the primary source of the detected PAH. The presence of PAH suggests potential health risk, underscoring the need for further in-depth investigation.


Subject(s)
Antioxidants , Hydrocarbons, Chlorinated , Milk, Human , Polycyclic Aromatic Hydrocarbons , Milk, Human/chemistry , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Croatia , Female , Persistent Organic Pollutants , Pesticides/analysis , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Adult , Environmental Pollutants/analysis
15.
Environ Sci Pollut Res Int ; 31(19): 28474-28493, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558342

ABSTRACT

The use of electronic waste in cement concrete as a fibre additive has proven to be very promising for improving mechanical characteristics and developing sustainable construction materials to reduce the waste dumped in landfills. The following study investigated the effect of electronic waste (printed circuit boards (PCBs)) on the mechanical properties of concrete and predicted the same properties with an appropriate machine learning technique. PCB fibres 45 mm in length and 1.5 mm in width were manufactured and added as fibre additions to two sets of concrete mixes with and without silica fume. A 10% volume replacement of cement was substituted with silica fume (SF) to enhance the characteristics of PCB fibre-reinforced concrete and minimize cement consumption. The study included an evaluation of the fresh properties and mechanical characteristics after a 28-day curing period; thereafter, the results were compared and studied using the Levenberg-Marquardt backpropagation algorithm for predictions. The results show that the mechanical properties improved up to a 5% addition of PCB fibres, resulting in strengths of 63.55 MPa and 69.92 MPa for mixtures of PCB5% and SFPCB5%, respectively. A similar trend was achieved for other properties, such as the tensile and flexural strengths. The results of the ANN model predicted values with R2 values ranging from 0.94 to 0.99, indicating the efficacy of the model.


Subject(s)
Construction Materials , Silicon Dioxide , Silicon Dioxide/chemistry , Electronic Waste
16.
Micromachines (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675237

ABSTRACT

Soft lithography has long remained the state of the art to generate the necessary micropatterning for molded microfluidic (MF) chips. Previous attempts to use printed circuit boards (PCBs) as a cheap and accessible alternative to expensive lithographed molds for the production of PDMS MF chip prototypes have shown their limitations. A more in-depth exploration of using PCBs as a mold substrate and a novel methodology of using flexible PCBs to produce highly accurate MF chips is reported here for the first time. Cross sections highlight the improved accuracy of this method, and peel testing is performed to demonstrate suitable adhesion between the glass substrate and PDMS cast. Positive cell growth viability showcases this novel method as a high-accuracy, high-accessibility, low-cost prototyping method for microfluidic chips while still maintaining all favorable properties provided by the PDMS material.

17.
Eur Thyroid J ; 13(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657654

ABSTRACT

Objective: The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case-control cohort. Methods: We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4'-DDT and 4,4'-DDE) were measured in the serum by liquid or gas chromatography-mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants' levels, considered individually or as mixture. BRAFV600E mutation was assessed by standard methods. Results: The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10-3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41-0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants' mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180. Conclusion: Our study suggests, for the first time in a case-control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants' mixture, likely due to a potential reverse causality.


Subject(s)
Alkanesulfonic Acids , Endocrine Disruptors , Fluorocarbons , Persistent Organic Pollutants , Polychlorinated Biphenyls , Thyroid Neoplasms , Humans , Case-Control Studies , Fluorocarbons/blood , Fluorocarbons/adverse effects , Female , Male , Middle Aged , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/blood , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/genetics , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/adverse effects , Alkanesulfonic Acids/blood , Adult , Persistent Organic Pollutants/adverse effects , Persistent Organic Pollutants/blood , Aged , Dichlorodiphenyl Dichloroethylene/blood , Decanoic Acids/blood , Decanoic Acids/adverse effects , DDT/blood , DDT/adverse effects , Italy/epidemiology , Caprylates/blood , Caprylates/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Fatty Acids/blood , Sulfonic Acids/blood , Mutation , Environmental Exposure/adverse effects
18.
Environ Sci Technol ; 58(15): 6499-6508, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38572580

ABSTRACT

A social housing estate in Denmark was designated for demolition due to exceedance of guidance values for polychlorinated biphenyls (PCBs) in indoor air. Here, we deployed precleaned silicone wristbands (n = 46) among demolition workers of these contaminated buildings during single workdays while conducting various work tasks. We established a method to analyze all 209 PCBs in wristbands to identify prominent congeners of exposure and evaluate differences between tasks. Wristbands were extracted using microwave-assisted extraction and then concentrated for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Twenty-nine chromatographic peaks representing 37 congeners were detected in every wristband, and tetra-CBs were the dominant homologue group. PCB-66, -44, and -70 were the most abundant congeners measured in worker wristbands, none of which are included within the typical seven indicator or WHO 12 PCBs. Workers who cut PCB-containing sealants had wristbands with the highest PCB concentrations (geometric mean ∑209PCBs = 1963 ng/g wristband), which were followed by those handling concrete elements on the building roof. Additionally, wristbands captured a broader range of PCBs than has been previously measured in air and serum samples. Taken together, our results highlight the importance of total congener analysis in assessing current PCB exposure in demolition work and the utility of wristbands for assessing these exposures.


Subject(s)
Polychlorinated Biphenyls , Humans , Polychlorinated Biphenyls/analysis , Environmental Monitoring , Tandem Mass Spectrometry , Silicones
19.
Sci Total Environ ; 930: 172814, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38679096

ABSTRACT

Ocean contamination, particularly from persistent organic pollutants (POPs), remains a significant threat to marine predators that occupy high trophic positions. Long-lived procellariform seabirds are apex predators in marine ecosystems and tend to accumulate contaminants. Prolonged exposure to pollutants negatively affects their fitness including reproductive success. Low breeding success may represent a hurdle for the restoration of small and endangered seabird populations, including several highly threatened gadfly petrels. Here we investigated the annual variation (2019 and 2022) in organochlorine pesticide (OCP), polychlorinated biphenyl ether (PCB), polybrominated diphenyl ether (PBDE), and polycyclic aromatic hydrocarbon (PAH) exposure in the endangered Bermuda petrel (Pterodroma cahow), and the relationship between female contaminant burden and breeding parameters. We found that petrels were exposed to a wide range of pollutants (33 out of 55 showed measurable levels) with PCBs dominating the blood contaminant profiles in both years. Only 9 compounds were detected in >50 % of the birds. Specifically, among OCPs, p, p'-DDE and hexaclorobenzene were the most frequently detected while fluorene and acenaphthene were the most common PAH. The concentrations of ∑5PCBs and ∑7POPs were higher in older birds. Furthermore, females with greater contaminant burdens laid eggs with a lower probability of hatching. However, female investment in egg production (size and volume) was unrelated to their blood contaminant load. Overall, this study highlights the presence of a wide range of contaminants in the petrel's food web, and it sheds light on the potential impact of chronic exposure to sub-lethal levels of PCBs on the breeding success of seabirds. We claim that toxicological testing should be a practice integrated in the management of seabirds, particularly of endangered species to monitor how past and present anthropogenic activities impact their conservation status.


Subject(s)
Birds , Endangered Species , Environmental Monitoring , Halogenated Diphenyl Ethers , Persistent Organic Pollutants , Reproduction , Animals , Reproduction/drug effects , Birds/physiology , Halogenated Diphenyl Ethers/blood , Female , Polychlorinated Biphenyls/blood , Polycyclic Aromatic Hydrocarbons/analysis , Hydrocarbons, Chlorinated/blood , Water Pollutants, Chemical , Pesticides/blood
20.
J Xray Sci Technol ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38669512

ABSTRACT

BACKGROUND: The rapid development of industrialization in printed circuit board (PCB) warrants more complexity and integrity, which entails an essential procedure of PCB inspection. X-ray computed laminography (CL) enables inspection of arbitrary regions for large-sized flat objects with high resolution. PCB inspection based on CL imaging is worthy of exploration. OBJECTIVE: This work aims to extract PCB circuit layer information based on CL imaging through image segmentation technique. METHODS: In this work, an effective and applicable segmentation model for PCB CL images is established for the first time. The model comprises two components, with one integrating edge diffusion and l0 smoothing to filter CL images with aliasing artifacts, and the other being the fuzzy energy-based active contour model driven by local pre-fitting energy to segment the filtered images. RESULT: The proposed model is able to suppress aliasing artifacts in the PCB CL images and has good performance on images of different circuit layers. CONCLUSIONS: Results of the simulation experiment reveal that the method is capable of accurate segmentation under ideal scanning condition. Testing of different PCBs and comparison of different segmentation methods authenticate the applicability and superiority of the model.

SELECTION OF CITATIONS
SEARCH DETAIL
...