Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Sci Rep ; 14(1): 21728, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289512

ABSTRACT

This study aimed to design a VEGFR-targeting peptide-drug conjugate with the ability to decrease tumor burden and suppress tumor angiogenesis, and to further evaluate the therapeutic effect of anti-PD-1 antibody in HCC therapy. A VEGFR-targeting peptide VEGF125 - 136 (QR) was conjugated with a lytic peptide (KLU) to form a peptide-drug conjugate QR-KLU. And the efficacy of QR-KLU in combination with anti-PD-1 antibody for HCC therapy in vivo and in vitro were evaluated. QR-KLU inhibited the proliferation and migration of mouse HCC cell line (Hepa1-6) cells under normoxic and hypoxic conditions in a dose-dependent manner. In the subcutaneous Hepa1-6 tumor model, QR-KLU combined with the anti-PD-1 antibody substantially inhibited tumor growth, promoted tumor necrosis, and prolonged the survival time of tumor-bearing mice. QR-KLU substantially inhibited hypoxia-induced expression of VEGF, promoted tumor vascular normalization, and increased cluster of differentiation 8+ (CD8+) T cell infiltration in the tumor. In addition, QR-KLU and anti-PD-1 antibody demonstrated a strong synergistic effect in promoting the activation of intratumoral CD8+ T cells, reducing the expression of immune-inhibitory factors, and increasing the expression of immune-stimulatory factors. This study proposed a novel approach for enhancing the efficacy of anti-PD-1 antibody using a VEGFR-targeting peptide-drug conjugate in HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Programmed Cell Death 1 Receptor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Cell Line, Tumor , Receptors, Vascular Endothelial Growth Factor/metabolism , Cell Proliferation/drug effects , Humans , Peptides/pharmacology , Peptides/chemistry , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/immunology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry
2.
Cancers (Basel) ; 16(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39272910

ABSTRACT

Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In vitro binding assays revealed that P1801 uniquely binds to human PD-1 and inhibits its interaction with PD-L1/2. It showed a minor effect on the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). P1801 significantly induced the release of IL-2 from activated T-cells but not from nonactivated T-cells. A dose-dependent linear PK profile was observed for the cynomolgus monkeys treated with repeated doses of P1801 at 5 mg/kg to 200 mg/kg once weekly. A four-week repeat-dose toxicity study revealed that P1801 given weekly was safe and well tolerated at doses ranging from 5 to 200 mg/kg/dose. No pathological abnormalities were noted. In humanized PD-1 mice harboring human PD-L1-expressing colon tumor cells, P1801 administered intraperitoneally twice per week at 12 mg/kg significantly inhibited tumor growth and prolonged mouse survival. P1801 displayed unique binding properties different from pembrolizumab and nivolumab. Therefore, it showed distinctive immunological reactions and significant antitumor activities. We are initiating a Phase 1 clinical study to test its combination use with ropeginterferon alfa-2b, which also has antiviral and antitumor activities, for the treatment of cancer.

3.
Clin Cosmet Investig Dermatol ; 17: 2141-2150, 2024.
Article in English | MEDLINE | ID: mdl-39345988

ABSTRACT

Background: Acral melanoma presents distinct biological characteristics compared to cutaneous melanoma. While adjuvant therapeutic strategies for high-risk resected acral melanoma closely resemble those for cutaneous melanoma, the evidence supporting the clinical application of adjuvant therapy for acral melanoma remains inadequate. Our aim was to systematically analyze the efficacy and safety profile of adjuvant therapy in acral melanoma. Methods: This systematic review adhered to a pre-registered protocol. We comprehensively searched four electronic databases and reference lists of included articles to identify eligible studies. The primary outcome was therapeutic efficacy, and the secondary outcome was adverse events (AEs). Results: This systematic review included 11 studies with 758 acral melanoma patients undergoing adjuvant therapy. High-dose interferon α-2b (IFN) regimens showed no significant difference in recurrence-free survival (RFS), though the longer regimen was linked to increased hepatotoxicity. Adjuvant anti-PD-1 therapy demonstrated varying efficacy, with improved RFS in patients who experienced immune-related AEs. Targeted therapy with dabrafenib plus trametinib achieved high 12-month RFS in patients with BRAF-mutated acral melanoma. Comparative studies suggested that adjuvant anti-PD-1 therapy is similarly effective to IFN in prolonging survival for high-risk acral melanoma patients. Additionally, prior treatment with pegylated IFN enhanced RFS in patients receiving adjuvant pembrolizumab. Conclusion: High-dose IFN was widely used as adjuvant therapy for acral melanoma, but serious AEs prompted the search for alternatives. Adjuvant anti-PD-1 therapy shows promise, though it may be less effective than in non-acral melanoma. Further prospective studies are needed to determine the optimal adjuvant treatment for acral melanoma.

4.
Sci Prog ; 107(3): 368504241272703, 2024.
Article in English | MEDLINE | ID: mdl-39166262

ABSTRACT

PURPOSE: Programmed death-1 antibody plus chemotherapy has gained approval for the treatment for (human epidermal growth factor receptor 2 negative locally advanced or metastatic gastric or gastroesophageal junction cancer. This study aims to analyze the efficacy and safety of anti-programmed death-1 antibody combined with chemo- or anti-angiogenesis therapy in Chinese patients with advanced or metastatic gastric or gastroesophageal junction cancer in a real-world setting. METHODS: In total, 122 patients treated with anti-programmed death-1 antibody-based combination therapy between April 2019 and December 2021 were encompassed. Clinical outcomes and safety profile were measured and analyzed. RESULTS: In the whole cohort, median overall survival was 17.2 months, median progression-free survival was 10.9 months, and median duration of response was 9.4 months. Notably, in the first-line patients, the median overall survival was not reached, median progression-free survival was 14.8 months, objective response rate was 68.4%. In the second-line group, median overall survival, median progression-free survival, median duration of response, and objective response rate were 10.9 months, 5.9 months, 4.5 months, and 41.5%, respectively. Treatment-related adverse events of any grade were observed in 28.2% of the overall cohort, primarily affecting the hematological and liver function. Grade 3 or 4 adverse events were mainly characterized by increased levels of aspartate aminotransferase, alanine aminotransferase, along with decreased lymphocyte and white blood cells, as well as anemia. CONCLUSIONS: Patients in our cohort experienced a clinical benefit from anti-programmed death-1 antibody-combined treatment in first-line treatment settings, with acceptable treatment-related adverse events. The benefit of anti-programmed death-1 antibody combined with chemo- or anti-angiogenesis treatment to the second-line patients should be further confirmed by large multi-center randomized, controlled clinical trials.


Subject(s)
Esophageal Neoplasms , Esophagogastric Junction , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Middle Aged , Esophagogastric Junction/pathology , Esophagogastric Junction/drug effects , Aged , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment Outcome , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Progression-Free Survival , China , East Asian People
5.
Cancer Cell ; 42(9): 1570-1581.e4, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39094560

ABSTRACT

Neoadjuvant chemoradiotherapy (NACRT) was the standard treatment for patients with locally advanced rectal cancer (LARC) with proficient mismatch repair (pMMR) proteins. In this randomized phase 2 trial (ClinicalTrial.gov: NCT04304209), 134 pMMR LARC patients were randomly (1:1) assigned to receive NACRT or NACRT and the programmed cell death protein 1 (PD-1) antibody sintilimab. As the primary endpoint, the total complete response (CR) rate is 26.9% (18/67, 95% confidence interval [CI] 16.0%-37.8%) and 44.8% (30/67, 95% CI 32.6%-57.0%) in the control and experimental arm, respectively, with significant difference (p = 0.031 for chi-squared test). Response ratio is 1.667 (95% CI 1.035-2.683). Immunohistochemistry shows PD-1 ligand 1 (PD-L1) combined positive score is associated with the synergistic effect. The safety profile is similar between the arms. Adding the PD-1 antibody sintilimab to NACRT significantly increases the CR rate in pMMR LARC, with a manageable safety profile. PD-L1 positivity may help identify patients who might benefit most from the combination therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/immunology , Rectal Neoplasms/pathology , Rectal Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Female , Neoadjuvant Therapy/methods , Male , Middle Aged , Aged , Adult , DNA Mismatch Repair , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Chemoradiotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
J Thorac Dis ; 16(7): 4106-4119, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39144348

ABSTRACT

Background: Neoadjuvant therapy has become a mainstay of treatment for locally advanced resectable esophageal cancer. The objective of this research was to investigate the effectiveness and safety of neoadjuvant immunotherapy combined with chemotherapy in treating surgically removable esophageal squamous cell carcinoma (ESCC). Methods: From January 1, 2016 to April 1, 2023, we conducted a retrospective analysis of patients diagnosed with resectable esophageal cancer who underwent neoadjuvant immunotherapy combined with chemotherapy at The First Affiliated Hospital of Nanchang University. The primary endpoints of this study were pathologic complete response (pCR), major pathologic response (MPR) and disease-free survival (DFS). The secondary endpoints of this study were overall survival (OS), objective response rate (ORR) and safety. Results: A total of 122 patients with ESCC receiving neoadjuvant immune-chemotherapy (nICT) were included. Fifty-four patients achieved partial response (PR) and two patients achieved complete response (CR), with an ORR of 45.9%. Of the 106 patients who underwent surgery, a total of 28 patients achieved pCR (26.4%) and a total of 37 patients achieved MPR (34.9%). Grade 3 or higher adverse events occurred in 26 patients (21.3%). The most common postoperative complication was pneumonitis (25.5%). Conclusions: Neoadjuvant immunotherapy combined with chemotherapy demonstrates satisfactory efficacy in the treatment of locally advanced ESCC, with manageable treatment-related adverse events and postoperative complications.

7.
Biomedicines ; 12(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39200295

ABSTRACT

Neutrophil extracellular traps (NETs) released from neutrophils are related to cancer progression. However, the relationship between the therapeutic effects of immune checkpoint inhibitors (ICIs) such as anti-PD-1 and anti-PD-L1 antibodies and plasma NET concentration in patients with non-small cell lung cancer (NSCLC) is poorly understood. In this study, concentrations of citrullinated histone H3 (CitH3), a surrogate marker of NETs, in plasma before/after treatment were examined in patients with advanced or recurrent NSCLC undergoing ICI treatment (n = 185). The clinical significances of NET levels before/after treatment and posttreatment changes were statistically evaluated. As a result, multivariate Cox analysis showed that high NET levels before treatment were statistically significant predictors of unfavorable overall survival (OS; p < 0.001, HR 1.702, 95% CI 1.356-2.137) and progression-free survival (PFS; p < 0.001, HR 1.566, 95% CI 1.323-1.855). The Kaplan-Meier curves showed significant separation between the high- and low-NET groups in OS (p = 0.002) and PFS (p < 0.001). Additionally, high NET levels after treatment were also significantly associated with worse OS (p < 0.001) and PFS (p < 0.001) by multivariate Cox analysis. Notably, the pretreatment NET levels were significantly correlated with the plasma levels of NET-related inflammatory cytokines, such as IL-6 and IL-8, and with NET-related gene expression and immune-suppressive profile in peripheral blood mononuclear cells. Our findings suggest that NETs released from activated neutrophils might reduce the clinical efficacy of ICIs in patients with NSCLC.

8.
J Control Release ; 375: 681-697, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39094631

ABSTRACT

Despite significant progress in combining cancer immunotherapy with chemotherapy to treat triple negative breast cancer (TNBC), challenges persist due to target depletion and tumor heterogeneity, especially in metastasis. Chemotherapy lacks precise targeting abilities, and targeted therapy is inadequate in addressing the diverse heterogeneity of tumors. To address these challenges, we introduce RGDEVD-DOX as a tumor-specific immunogenic agent, namely TPD1, which targets integrin αvß3 and gets continuously activated by apoptosis. TPD1 facilitates the caspase-3-mediated in situ amplification that results in tumor-specific accumulation of doxorubicin. This local concentration of doxorubicin induces immunogenic cell death and promotes the recruitment of immune cells to the tumor site. Notably, the tumor-targeting capabilities of TPD1 help bypass the systemic immunotoxicity of doxorubicin. Consequently, this alters the tumor microenvironment, converting it into a 'hot' tumor that is more susceptible to immune checkpoint inhibition. We demonstrated the anti-metastatic and anti-cancer efficacy of this treatment using various xenograft and metastatic models. This study underscores the high potential of caspase-3 cleavable peptide-drug conjugates to be used in conjunction with anti-cancer immunotherapies.

9.
Int Immunopharmacol ; 139: 112696, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39018692

ABSTRACT

BACKGROUND: Anti-PD-1-based immunotherapy has limited benefits in patients with pancreatic cancer. Accumulating data indicate that natural products exert antitumor activity by remodeling the tumor immune microenvironment. It has been reported that neogambogic acid (NGA), an active natural monomer extracted from Garcinia, has anti-inflammatory and antitumor effects. Nevertheless, there are few systematic studies on the antitumor efficacy and immunomodulatory effects of NGA in pancreatic cancer. METHODS: An orthotopic mouse model of pancreatic cancer was established and were treated with different doses of NGA. Tumor growth and ascites were observed. Flow cytometry and immunohistochemistry (IHC) were used to investigate the tumor immune microenvironment. CD11b+ MDSCs were infused back into mice with pancreatic cancer to observe tumor progression after NGA treatment. Bone marrow cells were induced to differentiate into MDSCs, and the effects of NGA on MDSCs were analyzed and the underlying mechanism was explored. The effects of NGA combined with an anti-PD-1 antibody on pancreatic cancer were further tested. RESULTS: NGA significantly inhibited the tumor growth and improve ascites character in pancreatic cancer model mice. Flow cytometry and IHC analysis revealed that NGA decreased the MDSCs proportion and infiltration in the tumor microenvironment. Moreover, adoptive MDSCs largely attenuated the inhibitory effect of NGA on the progression of pancreatic cancer. In addition, we showed that NGA significantly promoted apoptosis and inhibited the differentiation, migration and immunosuppressive function of MDSCs and decreased level of STAT3 and p-STAT3. Furthermore, we demonstrated that NGA synergistically enhanced the efficacy of anti-PD-1 antibodies against pancreatic cancer. CONCLUSION: NGA inhibited the progression of pancreatic cancer by inhibiting MDSCs in the tumor microenvironment, and enhanced the efficacy of anti-PD-1 therapy in the treatment of pancreatic cancer.


Subject(s)
Immune Checkpoint Inhibitors , Myeloid-Derived Suppressor Cells , Pancreatic Neoplasms , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/drug effects , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Mice, Inbred C57BL , Immunotherapy/methods , STAT3 Transcription Factor/metabolism
10.
Biomed Pharmacother ; 178: 117060, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053421

ABSTRACT

BACKGROUND: Due to the size and location of the tumor, incomplete radiofrequency ablation (iRFA) of the target tumor inhibits tumor immunity. In this study, a murine herpes simplex virus (oHSV2-mGM) armed with granulocyte-macrophage colony-stimulating factor (GM-CSF) was constructed to explore its effect on innate and adaptive immunity during iRFA, and the inhibitory effect of programmed cell death-1 (PD1) on tumor. METHODS: We verified the polarization and activation of RAW264.7 cells mediated by oHSV2-mGM in vitro. Subsequently, we evaluated the efficacy of oHSV2-mGM alone and in combination with αPD1 in the treatment of residual tumors after iRFA in two mouse models. RNA-seq was used to characterize the changes of tumor microenvironment. RESULTS: oHSV2-mGM lysate effectively stimulated RAW264.7 cells to polarize into M1 cells and activated M1 phenotypic function. In the macrophage clearance experiment, oHSV2-mGM activated the immune response of tumor in mice. The results in vivo showed that oHSV2-mGM showed better anti-tumor effect in several mouse tumor models. Finally, oHSV2-mGM combined with PD1 antibody can further enhance the anti-tumor effect of oHSV2-mGM and improve the complete remission rate of tumor in mice. CONCLUSION: The application of oHSV2-mGM leads to the profound remodeling of the immune microenvironment of residual tumors. oHSV2-mGM also works in synergy with PD1 antibody to achieve complete remission of tumors that do not respond well to monotherapy at immune checkpoints. Our results support the feasibility of recombinant oncolytic virus in the treatment of residual tumors after iRFA, and propose a new strategy for oncolytic virus treatment of tumors.


Subject(s)
Neoplasm, Residual , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Female , Humans , Mice , Cell Line, Tumor , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Macrophages/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Radiofrequency Ablation/methods , RAW 264.7 Cells , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism
11.
Biomed Pharmacother ; 177: 117074, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972149

ABSTRACT

Glioma, a common and highly malignant central nervous system tumor, markedly influences patient prognosis via interactions with glioma-associated macrophages. Previous research has revealed the anticancer potential of ß-mangostin, a xanthone derivative obtained from the mangosteen fruit. This research investigated the role of ß-mangostin on microglia in the glioma microenvironment and evaluated the efficacy of ß-mangostin combined with anti-PD-1 antibody (αPD-1) in glioma-bearing mice. The results showed that, ß-mangostin attenuated M2 polarization in BV2 cells and promoted M1-related interleukin (IL)-1ß and IL-6 secretion, thereby inhibiting glioma invasion. In addition, ß-mangostin improved the anti-glioma effects of αPD-1 and increased CD8+T cell and M1-type microglia infiltration. Mechanistically, ß-mangostin bound to the stimulator of interferon genes (STING) protein, which is crucial for the anti-tumor innate immune response, and promoted STING phosphorylation in microglia, both in vivo and in vitro. These results provide insights into its mode of action and supporting further investigation into ß-mangostin as a therapeutic agent.


Subject(s)
Glioma , Membrane Proteins , Microglia , Xanthones , Xanthones/pharmacology , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Glioma/drug therapy , Glioma/pathology , Glioma/metabolism , Mice , Membrane Proteins/metabolism , Cell Line, Tumor , Mice, Inbred C57BL , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Tumor Microenvironment/drug effects , Male , Humans , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Phosphorylation/drug effects
12.
Int Cancer Conf J ; 13(3): 268-274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962048

ABSTRACT

Skin toxicity is the most common adverse event of treatment with immune check point inhibitors. Among them, erythema multiforme is a rare occurrence with a frequency of 4%, with most of the cases developing grade 1/2 disease. We experienced high grade erythema multiforme major developing with pembrolizumab treatment for anal canal cancer with extensive skin metastases. Steroid ointment was ineffective, and the skin lesions with blisters expanded to > 45% of the body surface area. The patient was at risk for symptom aggravation, and a pulse therapy with methylprednisolone and increasing the dose of oral prednisolone (1 mg/kg) were started. The skin lesions improved in 1.8 months. Unless urgent and appropriate treatments such as high dose steroid administration were conducted, the skin toxicities could not be controlled. The presence of CD4+ T cells and PD-L1+ keratinocytes in the skin biopsy might be a predictive marker of erythema multiforme major resistant to standard steroid treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13691-024-00676-4.

13.
MedComm (2020) ; 5(7): e618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974711

ABSTRACT

T-cell receptor (TCR) engineered T-cell therapy, unlike chimeric antigen receptor T-cell therapy, relies on the inherent ability of TCRs to detect a wider variety of antigenic epitopes, such as protein fragments found internally or externally on cells. Hence, TCR-T-cell therapy offers broader possibilities for treating solid tumors. However, because of the complicated process of identifying specific antigenic peptides, their clinical application still encounters significant challenges. Thus, we aimed to establish a novel "universal" TCR-T "artificial antigen expression" technique that involves the delivery of the antigen to tumor cells using DSPE-PEG-NY-ESO-1157-165 liposomes (NY-ESO-1 Lips) to express TCR-T-cell-specific recognition targets. In vitro as well as in vivo studies revealed that they could accumulate efficiently in the tumor area and deliver target antigens to activate the tumor-specific cytotoxic T-cell immune response. NY-ESO-1 TCR-T therapy, when used in combination, dramatically curbed tumor progression and extended the longevity of mice. Additionally, PD-1 blockage enhanced the therapeutic effect of the aforementioned therapy. In conclusion, NY-ESO-1 Lips "cursed" tumor cells by enabling antigenic target expression on their surface. This innovative technique presents a groundbreaking approach for the widespread utilization of TCR-T in solid tumor treatment.

14.
Front Immunol ; 15: 1371379, 2024.
Article in English | MEDLINE | ID: mdl-38881888

ABSTRACT

SMARCA4-deficient undifferentiated tumor (SMARCA4-dUT) is a devastating subtype of thoracic tumor with SMARCA4 inactivation and is characterized by rapid progression, poor prognosis, and high risk of postoperative recurrence. However, effective treatments for SMARCA4-dUT are lacking. Herein, we describe a patient with SMARCA4-dUT who exhibited an impressive response to the anti-programmed cell death protein-1 (PD-1) antibody (tislelizumab) in combination with conventional chemotherapy (etoposide and cisplatin). To the best of our knowledge, this is the first case of SMARCA4-dUT treated with chemotherapy, comprising etoposide and cisplatin, combined with anti-PD-1 inhibitors. Immunotherapy combined with etoposide and cisplatin may be a promising strategy to treat SMARCA4-dUT.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , DNA Helicases , Transcription Factors , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , DNA Helicases/genetics , DNA Helicases/deficiency , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Transcription Factors/genetics , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Etoposide/therapeutic use , Etoposide/administration & dosage , Male , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Treatment Outcome , Female
15.
Transl Cancer Res ; 13(5): 2238-2250, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881916

ABSTRACT

Background: The optional regimens of subsequent therapy after failure of anti-programmed cell death protein-1 (PD-1) antibody in metastatic renal cell carcinoma (mRCC) remain to be explored. There are reports of the efficacy of single-agent vascular endothelial growth factor receptor tyrosine kinase inhibitor (VEGFR-TKI) in patients with mRCC after failure of anti-PD-1 antibody therapy. However, it is not clear whether it is beneficial for patients to receive anti-PD-1 antibody as post-progression treatment. It has great significance to explore whether continuous application of anti-PD-1 antibody is beneficial for patients with mRCC whose diseases progressed to the state of pre-anti-PD-1 therapy. The purposes of this study are to explore the efficacy and safety of subsequent treatment on whether to continue using anti-PD-1 antibody therapy for patients who have progressive mRCC after prior treatment with anti-PD-1 antibody. Methods: The clinical data of patients with mRCC from the Department of Immunotherapy in the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital from February 1, 2019 to December 31, 2021 were analyzed retrospectively. The primary endpoints were the objective response rate (ORR) and progression-free survival (PFS). The ORR and disease control rate (DCR) were estimated with Fisher's exact test. PFS and overall survival (OS) were assessed using the Kaplan-Meier method and log-rank tests. The associations between potential prognostic variables and PFS were evaluated with univariate and multivariate Cox regression analyses. A P value of less than or equal to 0.05 was deemed as statistically significant. Results: A total of 35 patients were included in this study, during which 19 received VEGFR-TKI monotherapy and 16 received the VEGFR-TKI plus anti-PD-1 antibody therapy. Until the last follow-up on June 30, 2022, 19 patients experienced progressive disease (PD), five were in remission, and 11 kept stable disease (SD). After a median follow-up of 28.7 [95% confidence interval (CI): 17.0-35.6] months, the median PFS (mPFS) was 11.6 months for the VEGFR-TKI group and 9.1 months for the VEGFR-TKI plus anti-PD-1 antibody group [hazard ratio (HR) =0.81, 95% CI: 0.32-1.03, P=0.44]. Median OS (mOS) were 16.9 and 11.2 months respectively (HR =0.99, 95% CI: 0.44-2.27, P=0.90). The ORRs were 26.3% and 0% (P=0.049), and the DCRs were 47.4% and 43.8% (P=0.55) respectively. Treatment-related adverse events (TRAEs) occurred in 14 patients (73.7%) in the VEGFR-TKI group and 14 patients (87.5%) in the VEGFR-TKI plus anti-PD-1 antibody group (P=0.42); grade 3/4 TRAEs occurred in two patients (10.5%) and six patients (37.5%) respectively (P=0.11). Conclusions: VEGFR-TKI monotherapy is an efficacious regimen for patients with mRCC whose diseases progressed on previous anti-PD-1 antibody therapy, and continuous anti-PD-1 therapy after failure of anti-PD-1 antibody could not provide additional clinical benefit but increased the incidence of TRAEs.

16.
Cell Rep Med ; 5(6): 101590, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843844

ABSTRACT

Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.


Subject(s)
Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Humans , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Mice, Inbred C57BL , Oligopeptides/chemistry , Oligopeptides/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Immune Checkpoint Inhibitors/pharmacology
17.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833034

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Subject(s)
Benzofurans , Cell Differentiation , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Mice, Inbred C57BL , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
18.
J Pak Med Assoc ; 74(4): 825-826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751292

ABSTRACT

Immunotherapy related adverse events are commonly seen with immune check point inhibitors therapy. We report the case of a 40-year-old female diagnosed with stage IVB endometroid grade III endometrial cancer, on pembrolizumab immunotherapy, an anti-programmed-death-receptor-1 (PD-1) antibody. Patient was referred for 18F-FDG PET/CT for restaging. 18F-FDG PET/CT demonstrated diffuse increased FDG uptake throughout the body of the pancreas associated with fat stranding in the peripancreatic region, suggestive of pembrolizumab-induced pancreatitis. The diagnosis was confirmed by elevated amylase and lipase levels. immune-related adverse events (irAE) are frequently identified on 18F-FDG PET-CT, which may lead to early diagnosis, close clinical follow-up, and appropriate clinical management of immune-related adverse events.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Agents, Immunological , Fluorodeoxyglucose F18 , Pancreatitis , Positron Emission Tomography Computed Tomography , Adult , Female , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Pancreatitis/immunology , Pancreatitis/chemically induced , Pancreatitis/diagnostic imaging , Radiopharmaceuticals
19.
Cancer Med ; 13(10): e7203, 2024 May.
Article in English | MEDLINE | ID: mdl-38769930

ABSTRACT

OBJECTIVE: To explore the efficacy of serplulimab plus chemotherapy in esophageal squamous cell carcinoma (ESCC) patients with liver metastases. METHODS: A post hoc exploratory analysis of ASTRUM-007 study was performed, focusing on the association between the liver metastases status and the clinical outcomes. A systematic literature search of electronic databases was conducted to identify eligible randomized controlled trials for the meta-analysis. Study-level pooled analyses of hazard ratios (HRs) for PFS according to liver metastases were performed. RESULTS: The post hoc analysis of ASTRUM-007 showed that although patients with liver metastases had a worse prognosis comparing with the non-liver metastases patients in both treatment arms (serplulimab plus chemotherapy arm: median PFS, 5.7 vs. 6.6 months, HR 1.57 [95% CI, 1.15-2.13]; median OS, 13.7 vs. 15.3 months, HR 1.48 [95% CI, 1.09-1.98]; placebo plus chemotherapy arm: median PFS, 4.3 vs. 5.5 months, HR 1.58 [95% CI, 1.01-2.39]; median OS, 10.3 vs. 11.2 months, HR 1.32 [95% CI, 0.84-2.00]), OS and PFS benefits derived from serplulimab plus chemotherapy versus placebo plus chemotherapy in this study were observed in both patients with liver metastases (HR of PFS: 0.60; 95% CI, 0.37-0.97; HR of OS: 0.68; 95% CI, 0.43-1.11) and the non-liver metastases patients (HR of PFS: 0.62; 95% CI, 0.49-0.80; HR of OS: 0.69; 95% CI, 0.55-0.87) with similar magnitude. Three randomized controlled trials were included in the meta-analysis. Pooled HRs demonstrated that the addition of anti-PD-1 antibodies significantly improved PFS compared to chemotherapy alone regardless of liver metastases status. CONCLUSIONS: This study reveals that the presence of liver metastases is a poor prognostic factor but does not affect the improvements in both PFS and OS brought by adding PD-1 blockade to chemotherapy in ESCC patients. Predictive biomarkers for survival in these patients warrant further investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Liver Neoplasms , Humans , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/secondary , Esophageal Squamous Cell Carcinoma/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Male , Immune Checkpoint Inhibitors/therapeutic use , Female , Middle Aged , Randomized Controlled Trials as Topic , Aged , Treatment Outcome , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage
20.
BMC Immunol ; 25(1): 29, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730320

ABSTRACT

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Subject(s)
Cross Reactions , Immunotherapy , Programmed Cell Death 1 Receptor , Animals , Humans , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Cross Reactions/immunology , Immunotherapy/methods , Hydrogen-Ion Concentration , Neoplasms/immunology , Neoplasms/therapy , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epitopes/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Mice, Inbred C57BL , Female
SELECTION OF CITATIONS
SEARCH DETAIL