Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 581
Filter
1.
Biochem Biophys Rep ; 40: 101828, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39380576

ABSTRACT

This study investigates the role of Rho GTPases, specifically Cdc42, Rac1, and RhoA, in platelet-derived growth factor receptors (PDGFRα and PDGFRß) signaling. Signal transducer and activator of transcription (STAT) proteins, essential for cellular processes such as proliferation and immune response, are activated downstream of PDGFRs. Dysregulation of these pathways is linked to various diseases, including cancer. The current study examines the effects of Rho GTPase depletion on PDGFR phosphorylation, STAT protein stability, and downstream signaling. Results indicate that depletion of Cdc42, Rac1, or RhoA impairs PDGFR phosphorylation and reduces STAT1 and STAT3 signaling, without significantly affecting AKT and ERK1/2 pathways. The findings highlight the critical regulatory roles of Rho GTPases in PDGFR-mediated STAT signaling.

2.
Cureus ; 16(8): e67278, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39301376

ABSTRACT

Hypereosinophilia (HE) has various causes and treatment remains a challenge when there is no relief to symptoms and a decrease in the eosinophil count. Such cases need extensive laboratory support, but the cause may remain obscured in some cases. This is a case of a 58-year-old known diabetic and hypothyroid female who initially presented with fever secondary to pyelonephritis and later developed severe itching and extensive skin hyperpigmented lesions. The laboratory findings were a persistently elevated eosinophil count and generalized itching that was refractory to treatment. The presentation of episodes of itching was like Gleich syndrome without angioedema and needed an injection of hydrocortisone and chlorpheniramine maleate to treat. Diethylcarbamazine, hydroxyurea, and steroids failed to decrease the eosinophilia as well as the episodic itching. We conducted an extensive workup for mutation studies. The bone marrow eosinophil count was above 20%. Considering it as idiopathic non-steroid-responding HE, imatinib was started, and the patient immediately responded, and the eosinophil count came within the normal range within one month. She has been followed up and closely monitored for the past 1 to 1.5 years with no relapse of symptoms and no rise in the eosinophil count.

3.
J Clin Exp Hematop ; 64(3): 223-231, 2024.
Article in English | MEDLINE | ID: mdl-39343610

ABSTRACT

IgG4-related sialadenitis (IgG4-SA) is one of the IgG4-related disease. The histological features of IgG4-SA include dense lymphoplasmacytic infiltrates and fibrosis. This study aimed to reveal the involvement of plasma cells in the development of fibrosis and the mechanism underlying fibrosis in IgG4-SA. Hematoxylin-eosin staining, Azan staining, silver staining, and immunohistochemistry (IHC) were performed on IgG4-SA and chronic sialadenitis specimens, and theses samples were analyzed by image analysis software. Histological spatial analysis was used to analyze the localization of IHC-positive cells and the distances between these cells. In the IgG4-SA group, many secondary lymphoid follicles with germinal centers were found, and many collagen fibers developed around these germinal centers. Collagen fibers composed mainly of type I collagen was abundant at sites away from secondary lymphoid follicles, and reticular fibers composed of type III collagen was abundant near secondary lymphoid follicles. Many FAP+ fibroblasts and MUM1+ plasma cells were localized near secondary lymphoid follicles. Histological spatial analysis demonstrated that 90.4% of MUM1+ plasma cells accumulated within 20 µm of FAP+ fibroblasts. Multiple immunofluorescence assays revealed that MUM1+ plasma cells expressed platelet-derived growth factor (PDGF) ß, and FAP+ fibroblasts expressed PDGF receptor (PDGFR) ß and pSTAT3 in IgG4-SA. We have shown that fibrosis is localized around secondary lymphoid follicles and that fibroblasts are activated by plasma cells via PDGF/PDGFR signaling in IgG4-SA.


Subject(s)
Fibroblasts , Immunoglobulin G , Plasma Cells , Sialadenitis , Signal Transduction , Sialadenitis/pathology , Sialadenitis/metabolism , Sialadenitis/immunology , Humans , Plasma Cells/metabolism , Plasma Cells/pathology , Plasma Cells/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/pathology , Immunoglobulin G4-Related Disease/metabolism , Platelet-Derived Growth Factor/metabolism , Fibrosis , Male , Female , Receptors, Platelet-Derived Growth Factor/metabolism , Middle Aged
4.
Sci Rep ; 14(1): 20278, 2024 08 31.
Article in English | MEDLINE | ID: mdl-39217245

ABSTRACT

Alterations to cilia are responsible for a wide range of severe disease; however, understanding of the transcriptional control of ciliogenesis remains incomplete. In this study we investigated whether altered cilia-mediated signaling contributes to the pleiotropic phenotypes caused by the Forkhead transcription factor FOXC1. Here, we show that patients with FOXC1-attributable Axenfeld-Rieger Syndrome (ARS) have a prevalence of ciliopathy-associated phenotypes comparable to syndromic ciliopathies. We demonstrate that altering the level of Foxc1 protein, via shRNA mediated inhibition, CRISPR/Cas9 mutagenesis and overexpression, modifies cilia length in vitro. These structural changes were associated with substantially perturbed cilia-dependent signaling [Hedgehog (Hh) and PDGFRα], and altered ciliary compartmentalization of the Hh pathway transcription factor, Gli2. Consistent with these data, in primary cultures of murine embryonic meninges, cilia length was significantly reduced in heterozygous and homozygous Foxc1 mutants compared to controls. Meningeal expression of the core Hh signaling components Gli1, Gli3 and Sufu was dysregulated, with comparable dysregulation of Pdgfrα signaling evident from significantly altered Pdgfrα and phosphorylated Pdgfrα expression. On the basis of these clinical and experimental findings, we propose a model that altered cilia-mediated signaling contributes to some FOXC1-induced phenotypes.


Subject(s)
Cilia , Eye Abnormalities , Eye Diseases, Hereditary , Forkhead Transcription Factors , Phenotype , Signal Transduction , Cilia/metabolism , Cilia/pathology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Humans , Animals , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/metabolism , Mice , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Anterior Eye Segment/abnormalities , Anterior Eye Segment/metabolism , Anterior Eye Segment/pathology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Ciliopathies/genetics , Ciliopathies/metabolism , Ciliopathies/pathology , Female , Male , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Mutation
5.
FASEB J ; 38(16): e23863, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39143726

ABSTRACT

Smooth muscle cells (SMCs), Interstitial cells of Cajal (ICC) and Platelet-derived growth factor receptor α positive (PDGFRα+) cells form an integrated, electrical syncytium within the gastrointestinal (GI) muscular tissues known as the SIP syncytium. Immunohistochemical analysis of gastric corpus muscles showed that c-KIT+/ANO1+ ICC-IM and PDGFRα+ cells were closely apposed to one another in the same anatomical niches. We used intracellular microelectrode recording from corpus muscle bundles to characterize the roles of intramuscular ICC and PDGFRα+ cells in conditioning membrane potentials of gastric muscles. In muscle bundles, that have a relatively higher input impedance than larger muscle strips or sheets, we recorded an ongoing discharge of stochastic fluctuations in membrane potential, previously called unitary potentials or spontaneous transient depolarizations (STDs) and spontaneous transient hyperpolarizations (STHs). We reasoned that STDs should be blocked by antagonists of ANO1, the signature conductance of ICC. Activation of ANO1 has been shown to generate spontaneous transient inward currents (STICs), which are the basis for STDs. Ani9 reduced membrane noise and caused hyperpolarization, but this agent did not block the fluctuations in membrane potential quantitatively. Apamin, an antagonist of small conductance Ca2+-activated K+ channels (SK3), the signature conductance in PDGFRα+ cells, further reduced membrane noise and caused depolarization. Reversing the order of channel antagonists reversed the sequence of depolarization and hyperpolarization. These experiments show that the ongoing discharge of STDs and STHs by ICC and PDGFRα+ cells, respectively, exerts conditioning effects on membrane potentials in the SIP syncytium that would effectively regulate the excitability of SMCs.


Subject(s)
Giant Cells , Interstitial Cells of Cajal , Membrane Potentials , Receptor, Platelet-Derived Growth Factor alpha , Animals , Interstitial Cells of Cajal/physiology , Interstitial Cells of Cajal/metabolism , Mice , Membrane Potentials/physiology , Giant Cells/metabolism , Giant Cells/physiology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Anoctamin-1/metabolism , Stomach/physiology , Stomach/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Proto-Oncogene Proteins c-kit/metabolism , Male , Mice, Inbred C57BL
6.
J Clin Transl Hepatol ; 12(7): 625-633, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38993511

ABSTRACT

Background and Aims: The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods: Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results: Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions: Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.

7.
F1000Res ; 13: 120, 2024.
Article in English | MEDLINE | ID: mdl-38988879

ABSTRACT

Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor ß receptor (TGFßR) on fibroblast cell states.


Subject(s)
Fibroblasts , Homeostasis , Receptors, Fibroblast Growth Factor , Receptors, Platelet-Derived Growth Factor , Humans , Fibroblasts/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Animals , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Transforming Growth Factor beta/metabolism
8.
Res Sq ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38947055

ABSTRACT

Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract. However, their role(s) in esophageal motility are still unclear. The mouse esophagus has traditionally been described as almost entirely skeletal muscle in nature though ICC have been identified along its entire length. The current study evaluated the distribution of skeletal and smooth muscle within the esophagus using a mouse selectively expressing eGFP in smooth muscle cells (SMCs). The relationship of SMCs to ICC and PDGFRα+ cells was also examined. SMCs declined in density in the oral direction however SMCs represented ~ 25% of the area in the distal esophagus suggesting a likeness to the transition zone observed in humans. ANO1+ intramuscular ICC (ICC-IM) were distributed along the length of the esophagus though like SMCs, declined proximally. ICC-IM were closely associated with SMCs but were also found in regions devoid of SMCs. Intramuscular and submucosal PDGFRα+ cells were densely distributed throughout the esophagus though only intramuscular PDGFRα+ cells within the LES and distal esophagus highly expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with nNOS+, VIP+, VAChT+ and TH+ neurons throughout the LES and distal esophagus. GFAP+ cells resembling intramuscular enteric glia were observed within the muscle and were closely associated with ICC-IM and PDGFRα+ cells, occupying a similar location to c. These data suggest that the mouse esophagus is more similar to the human than thought previously and thus set the foundation for future functional and molecular studies using transgenic mice.

9.
J Microbiol Immunol Infect ; 57(4): 647-659, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839542

ABSTRACT

BACKGROUND: Co-therapy with albendazole and steroid is commonly used in patients with eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis infections. However, anthelminthics often worsen symptoms, possibly due to the inflammatory reaction to antigens released by dying worms. Therefore, the present study was to investigate the curative effects and probable mechanisms of the platelet-derived growth factor receptor-beta (PDGFR-ß) inhibitor AG1296 (AG) and the phosphoinositide 3-kinase inhibitor (PI3K) LY294002 (LY) in A. cantonensis-induced neurovascular unit dysfunction and eosinophilic meningoencephalitis. METHODS: Western blots were used to detect matrix protein degradation and the expressions of PDGFR-ß/PI3K signaling pathway. The co-localization of PDGFR-ß and vascular smooth muscle cells (VSMCs), and metalloproteinase-9 (MMP-9) and VSMCs on the blood vessels were measured by confocal laser scanning immunofluorescence microscopy. Sandwich enzyme-linked immunosorbent assays were used to test S100B, interleukin (IL)-6, and transforming growth factor beta in the cerebrospinal fluid to determine their possible roles in mouse resistance to A. cantonensis. RESULTS: The results showed that AG and LY cotherapy decreased the MMP-9 activity and inflammatory reaction. Furthermore, S100B, IL-6 and eosinophil counts were reduced by inhibitor treatment. The localization of PDGFR-ß and MMP-9 was observed in VSMCs. Furthermore, we showed that the degradation of the neurovascular matrix and blood-brain barrier permeability were reduced in the mouse brain. CONCLUSIONS: These findings demonstrate the potential of PDGFR-ß inhibitor AG and PI3K inhibitor LY co-therapy as anti-A. cantonensis drug candidates through improved neurovascular unit dysfunction and reduced inflammatory response.


Subject(s)
Angiostrongylus cantonensis , Chromones , Meningoencephalitis , Morpholines , Strongylida Infections , Animals , Angiostrongylus cantonensis/drug effects , Meningoencephalitis/drug therapy , Meningoencephalitis/parasitology , Strongylida Infections/drug therapy , Mice , Chromones/pharmacology , Chromones/therapeutic use , Morpholines/pharmacology , Morpholines/therapeutic use , Signal Transduction/drug effects , Male , Receptor, Platelet-Derived Growth Factor beta/metabolism , Blood-Brain Barrier/drug effects , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Matrix Metalloproteinase 9/metabolism , Eosinophilia/drug therapy , Drug Therapy, Combination , Sulfonamides
10.
J Cell Physiol ; 239(8): e31291, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38721633

ABSTRACT

The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-ß (PDGFR-ß) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-ß is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-ß in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-ß on H-type vessels is mediated through the PDGFRß-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-ß facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-ß emerges as a promising therapeutic approach for the management of OP in the near future.


Subject(s)
Neovascularization, Physiologic , Osteogenesis , Osteoporosis , Receptor, Notch1 , Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , p21-Activated Kinases , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Humans , Female , Mice , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Endothelial Cells/metabolism , Mice, Inbred C57BL , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis
11.
Phytomedicine ; 130: 155704, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759316

ABSTRACT

BACKGROUND: Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE: This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS: In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS: We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-ß. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-ß-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION: Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-ß-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.


Subject(s)
Anthraquinones , Cell Dedifferentiation , Kruppel-Like Factor 4 , Muscle, Smooth, Vascular , Neointima , Animals , Male , Mice , Rats , Anthraquinones/pharmacology , Arteriosclerosis/drug therapy , Arteriosclerosis/prevention & control , Atherosclerosis/drug therapy , Becaplermin/pharmacology , Carotid Artery Injuries/drug therapy , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects , Diet, High-Fat , Disease Models, Animal , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Neointima/drug therapy , Rats, Sprague-Dawley , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects
12.
medRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712133

ABSTRACT

Here we report the results of a single-center phase 2 clinical trial combining sorafenib tosylate, valproic acid, and sildenafil for the treatment of patients with recurrent high-grade glioma (NCT01817751). Clinical toxicities were grade 1 and grade 2, with one grade 3 toxicity for maculopapular rash (6.4%). For all evaluable patients, the median progression-free survival was 3.65 months and overall survival (OS) 10.0 months. There was promising evidence showing clinical activity and benefit. In the 33 evaluable patients, low protein levels of the chaperone GRP78 (HSPA5) was significantly associated with a better OS (p < 0.0026). A correlation between the expression of PDGFRα and OS approached significance (p < 0.0728). Five patients presently have a mean OS of 73.6 months and remain alive. This is the first therapeutic intervention glioblastoma trial to significantly associate GRP78 expression to OS. Our data suggest that the combination of sorafenib tosylate, valproic acid, and sildenafil requires additional clinical development in the recurrent glioma population.

13.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1947-1955, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812207

ABSTRACT

This study aims to decipher the mechanism of sinomenine in inhibiting platelet-derived growth factor/platelet-derived growth factor receptor(PDGF/PDGFR) signaling pathway in rheumatoid arthritis-fibroblast-like synoviocyte(RA-FLS) migration induced by neutrophil extracellular traps(NETs). RA-FLS was isolated from the synovial tissue of 3 RA patients and cultured. NETs were extracted from the peripheral venous blood of 4 RA patients and 4 healthy control(HC). RA-FLS was classified into control group, HC-NETs group, RA-NETs group, RA-NETs+sinomenine group and RA-NETs+sinomenine+CP-673451 group. RNA-sequencing(RNA-seq) was conducted to identify the differentially expressed genes between HC-NETs and RA-NETs groups. Sangerbox was used to perform the Gene Ontology(GO) function and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape was employed to build the protein-protein interaction(PPI) network. AutoDock Vina and PyMOL were used for molecular docking of sinomenine with PDGFß and PDGFRß. The cell proliferation and migration were determined by the cell counting kit-8(CCK-8) and cell scratch assay, respectively. Western blot was employed to determine the protein level of PDGFRß. Real-time quantitative polymerase chain reaction(RT-qPCR) was carried out to determine the mRNA levels of matrix metalloproteinases(MMPs). The results revealed that neutrophils in RA patients were more likely to produce NETs. Compared with HC-NETs group, RA-NETs group showed up-regulated expression of PDGFß and PDGFRß. Compared with control group, RA-NETs group showed increased cell proliferation and migration and up-regulated protein level of PDGFRß and mRNA levels of PDGFß, PDGFRß, MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs group, RA-NETs+sinomenine group presented decreased cell proliferation and migration and down-regulated protein and mRNA level of PDGFRß and mRNA levels of MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs+sinomenine group, the proliferation ability of RA-NETs+sinomenine+CP-673451 group decreased(P<0.05). The findings prove that sinomenine reduces the RA-NETs-induced RA-FLS migration by inhibiting PDGF/PDGFR signaling pathway, thus mitigating RA.


Subject(s)
Arthritis, Rheumatoid , Cell Movement , Morphinans , Platelet-Derived Growth Factor , Signal Transduction , Synoviocytes , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Movement/drug effects , Signal Transduction/drug effects , Morphinans/pharmacology , Synoviocytes/drug effects , Synoviocytes/metabolism , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Male , Female , Fibroblasts/drug effects , Fibroblasts/metabolism
14.
Drug Discov Today ; 29(7): 103989, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663580

ABSTRACT

As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.


Subject(s)
Platelet-Derived Growth Factor , Receptors, Platelet-Derived Growth Factor , Humans , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/antagonists & inhibitors , Animals , Molecular Targeted Therapy
15.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Article in English | MEDLINE | ID: mdl-38638139

ABSTRACT

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Subject(s)
Furin , Insulin , Furin/genetics , Phylogeny , Insulin/genetics , Transcriptome , Cysteine , Leucine/genetics , Vascular Endothelial Growth Factor A/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , ErbB Receptors/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Gene Expression Profiling , Tyrosine
16.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612936

ABSTRACT

Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.


Subject(s)
Infertility, Male , Semen , Male , Humans , Spermatozoa , Genitalia , Receptors, Platelet-Derived Growth Factor
17.
Neurooncol Adv ; 6(1): vdae029, 2024.
Article in English | MEDLINE | ID: mdl-38550394

ABSTRACT

Background: Diffuse intrinsic pontine gliomas (DIPGs) pose a significant challenge as a highly aggressive and currently incurable form of pediatric brain cancer, necessitating the development of novel therapeutic strategies. Omacetaxine, an FDA-approved protein synthesis inhibitor for treating certain hematological malignancies, was investigated for its potential antitumor effects against preclinical DIPG models. Methods: We employed primary DIPG cultures to study omacetaxine's cytotoxicity and its impact on colony formation. Annexin V staining and flow cytometry assessed apoptosis. Wound healing assays evaluated migration, while western blotting determined inhibition of oncogenic proteins. We tested omacetaxine's therapeutic efficacy in an orthotopic DIPG model and assessed brain penetration using mass spectrometry. Results: We found a pronounced cytotoxic activity of omacetaxine against DIPG neurospheres, with low IC50 values of approximately 20 nM. Omacetaxine exerted its anti-proliferative effect by inhibiting protein synthesis and the induction of apoptotic pathways, evidenced by significant elevated levels of cleaved caspase 3 and cleaved PARP, both key markers of apoptosis. Omacetaxine effectively targeted oncogenic players such as PDGFRα and PI3K without additional effects on the mTOR signaling pathway. Furthermore, our study revealed the inhibitory effects of omacetaxine on cell migration, and a significant reduction in integrin/FAK signaling, which plays a crucial role in tumor progression and metastasis. Conclusions: Despite these promising in vitro effects, omacetaxine's efficacy in an orthotopic DIPG model was limited due to inadequate penetration across the blood-brain barrier. As such, further research and advancements are crucial to improve the drug's brain penetration, thus enhancing its overall therapeutic potential.

18.
Int J Legal Med ; 138(4): 1351-1356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520552

ABSTRACT

Immunohistochemical analysis of platelet-derived growth factor receptor-α (PDGFR-α) was performed on human skin wounds obtained from forensic autopsy cases. Thirty human skin wounds were collected at different post-infliction intervals as follows: Group I, 4 h to 3 days (n = 16); Group II, 4 to 7 days (n = 7); Group III, 9 to 10 days (n = 3); and Group IV, 14 to 20 days (n = 4). Immunopositive reactions for PDGFR-α were not observed in the uninjured human skin specimens. In a semi-quantitative morphometrical analysis, the number of PDGFR-α-positive cells was observed increased in Group II, with the average number of PDGFR-α-positive cells being the highest in Group II. Additionally, in Group II, all specimens showed PDGFR-α-positive cells, with an average number of > 200 cells in five fields of view, suggesting a wound age of 4 to 7 days. Taken together, the immunohistochemical detection of PDGFR-α in human skin wounds can be a useful tool for wound age determination.


Subject(s)
Immunohistochemistry , Receptor, Platelet-Derived Growth Factor alpha , Skin , Humans , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Skin/injuries , Skin/pathology , Skin/metabolism , Skin/chemistry , Male , Female , Middle Aged , Adult , Forensic Pathology , Time Factors , Aged , Aged, 80 and over
19.
Cancer Cell ; 42(4): 682-700.e12, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38428409

ABSTRACT

Cancer-associated fibroblasts (CAFs) exhibit considerable heterogeneity in advanced cancers; however, the functional annotation and mechanism of CAFs in early-stage cancers remain elusive. Utilizing single-cell RNA sequencing and spatial transcriptomic, we identify a previously unknown PDGFRα+ITGA11+ CAF subset in early-stage bladder cancer (BCa). Multicenter clinical analysis of a 910-case cohort confirms that PDGFRα+ITGA11+ CAFs are associated with lymphovascular invasion (LVI) and poor prognosis in early-stage BCa. These CAFs facilitate LVI and lymph node (LN) metastasis in early-stage BCa, as evidenced in a PDGFRα+ITGA11+ CAFs-specific deficient mouse model. Mechanistically, PDGFRα+ITGA11+ CAFs promote lymphangiogenesis via recognizing ITGA11 surface receptor SELE on lymphatic endothelial cells to activate SRC-p-VEGFR3-MAPK pathway. Further, CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding matrix to assist cancer cell intravasation, fostering early-stage BCa LVI and LN metastasis. Collectively, our study reveals the crucial role of PDGFRα+ITGA11+ CAFs in shaping metastatic landscape, informing the treatment of early-stage BCa LVI.


Subject(s)
Cancer-Associated Fibroblasts , Receptor, Platelet-Derived Growth Factor alpha , Animals , Humans , Mice , Cancer-Associated Fibroblasts/pathology , Endothelial Cells , Fibroblasts/metabolism , Integrin alpha Chains , Lymphatic Metastasis/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
20.
Cancer Rep (Hoboken) ; 7(3): e2018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488488

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM: This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-ß)/TGFßRs signaling systems in CAFs. METHODS AND RESULTS: Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFßRII and PDGFRα/ß induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-ß receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRß signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-ß, as compared with controls. CONCLUSION: Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-ß receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-ß receptor signaling.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Receptors, Transforming Growth Factor beta/metabolism , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL