Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.501
Filter
1.
Oral Oncol ; 157: 106950, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39038413

ABSTRACT

INTRODUCTION: Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in the treatment of recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) Keynote 048 highlighted the relevance of PD-L1 Combined Positive Score (CPS) as a predictive biomarker for ICIs treatment, but challenges persist regarding ideal assessment and concordance between primary and relapsing tumor has not been determined. MATERIAL AND METHODS: This is a retrospective multicentric study that included HNSCC patients with locoregional and/or metastatic relapses after curative treatment. Histological samples of primary tumors and corresponding relapses were collected. The primary objective was to evaluate PD-L1 CPS concordance between primary and recurrent tumors, with secondary objective of exploring the impact of clinical-pathological variables. RESULTS: Out of 86 evaluated patients, 30 cases were excluded due to insufficient histological material, with a final enrollment of 56 patients. Concordance analysis revealed a 66.1% agreement in PD-L1 CPS between primary and recurrent tumors. Only 3.6% of cases exhibited a change from negative to positive PD-L1 CPS status, and 7.2% showed the reverse. Factors analyzed, including primary tumor site, treatment modality, and recurrence type, did not significantly influence PD-L1 CPS concordance level. CONCLUSION: While significant changes in PD-L1 CPS expression are rare, the study underscores the importance of confirmatory biopsies on relapse. However, reliance on archival tumor tissue for initial PDL1 assessment may be considered in cases where obtaining additional biopsies poses risks to patients or urgent therapeutic decisions are required.

2.
Ann Surg Oncol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951413

ABSTRACT

BACKGROUND: Signal-regulatory protein alpha (SIRPα) is an immune checkpoint molecule expressed on macrophages that functions to inhibit phagocytosis by binding to CD47 expressed on tumor cells. SIRPα has attracted increasing attention as a novel target for cancer immunotherapy; however, the expression and immune function of SIRPα in lung squamous cell carcinoma (LUSC) remain unclear. Therefore, this study aimed to identify the clinical importance of SIRPα expression in LUSC and to explore the factors that elevate SIRPα expression. PATIENTS AND METHODS: Primary LUSC specimens surgically resected from 172 patients underwent immunohistochemical evaluation of the association of SIRPα expression on tumor-associated macrophages with clinicopathological features and clinical outcomes. Furthermore, we analyzed the association of SIRPα expression with tumor-infiltrating lymphocytes and the expression of programmed cell death ligand 1 (PD-L1). In vitro, monocytes were treated with cytokines, and SIRPα protein expression was assessed by flow cytometry. RESULTS: There were no differences in SIRPα expression and clinicopathological factors. High SIRPα expression was significantly associated with PD-L1-positive expression, and high CD8, PD-1, and CD163 expression. The high SIRPα expression group showed significantly shorter recurrence-free survival (RFS) and overall survival (OS). On multivariate analysis, high SIRPα expression was an independent poor prognostic factor for RFS and OS. The expression of SIRPα protein in monocytes was upregulated by treatment with IFNγ. CONCLUSION: Our analysis revealed that high SIRPα expression significantly predicts poor prognosis in patients with surgically resected LUSC.

3.
Oncologist ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982653

ABSTRACT

BACKGROUND AND OBJECTIVES: Envafolimab is the first and only globally approved subcutaneously injectable PD-L1 antibody for the treatment of instability-high (MSI-H) or DNA mismatch repair deficient (dMMR) advanced solid tumors in adults, including those with advanced colorectal cancer that has progressed after treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. The aim of this investigation was to examine the pharmacokinetic and exposure-response (E-R) profile of envafolimab in patients with solid tumors to support the approval of fixed and alternative dose regimens. METHODS: In this study, a population pharmacokinetic (PopPK) modeling approach will be employed to quantitatively evaluate intrinsic and extrinsic covariates. Additionally, PopPK-estimated exposure parameters were used to evaluate E-R relationship for safety and efficacy to provide a theoretical basis for recommending optimal treatment regimens. Simulations were performed on the dosing regimens of body weight-based regimen of 2.50 mg/kg QW, fixed dose 150 mg QW, and 300 mg Q2W for the selection of alternative dosing regimens. Data from 4 clinical studies (NCT02827968, NCT03101488, NCT03248843, and NCT03667170) were utilized. RESULTS: The PopPK dataset comprised 182 patients with 1810 evaluable envafolimab concentration records. Finally, a one-compartment model incorporating first-order absorption, first-order linear elimination, and time-dependent elimination according to an Emax function was found to accurately describe the concentration-time data of envafolimab in patients with advanced solid tumors. Creatinine clearance and country were identified as statistically significant factors affecting clearance, but had limited clinical significance. A relative flat exposure-response relationship was observed between early measures of safety and efficacy to verify that no dose adjustment is required. Simulation results indicated that 2.50 mg/kg QW, 150 mg QW, and 300 mg Q2W regimen yield similar steady-state exposure. CONCLUSIONS: No statistically significant difference was observed between weight-based and fixed dose regimens. Model-based simulation supports the adoption of a 150 mg weekly or 300 mg biweekly dosing regimen of envafolimab in the solid tumor population, as these schedules effectively balance survival benefits and safety risks.

4.
Cancers (Basel) ; 16(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39001358

ABSTRACT

Immunotherapy, particularly targeting the PD-1/PD-L1 pathway, holds promise in cancer treatment by regulating the immune response and preventing cancer cells from evading immune destruction. Nonetheless, this approach poses a risk of unwanted immune system activation against healthy cells. To minimize this risk, our study proposes a strategy based on selective targeting of the PD-L1 pathway within the acidic microenvironment of tumors. We employed in silico methods, such as virtual screening, molecular mechanics, and molecular dynamics simulations, analyzing approximately 10,000 natural compounds from the MolPort database to find potential hits with the desired properties. The simulations were conducted under two pH conditions (pH = 7.4 and 5.5) to mimic the environments of healthy and cancerous cells. The compound MolPort-001-742-690 emerged as a promising pH-selective inhibitor, showing a significant affinity for PD-L1 in acidic conditions and lower toxicity compared to known inhibitors like BMS-202 and LP23. A detailed 1000 ns molecular dynamics simulation confirmed the stability of the inhibitor-PD-L1 complex under acidic conditions. This research highlights the potential of using in silico techniques to discover novel pH-selective inhibitors, which, after experimental validation, may enhance the precision and reduce the toxicity of immunotherapies, offering a transformative approach to cancer treatment.

5.
Cancers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39001412

ABSTRACT

First-line systemic therapy for patients with advanced or metastatic non-small cell lung cancer (NSCLC) has rapidly evolved over the past two decades. First, molecularly targeted therapy for a growing number of gain-of-function molecular targets has been shown to improve progression-free survival (PFS) and overall survival (OS) with favorable toxicity profiles compared to platinum-containing chemotherapy and can be given as first-line systemic therapy in ~25% of patients with NSCLC. Actionable genetic alterations include EGFR, BRAF V600E, and MET exon 14 splicing site-sensitizing mutations, as well as ALK-, ROS1-, RET-, and NTRK-gene fusions. Secondly, inhibitors of programmed cell death protein 1 or its ligand 1 (PD-1/L1) such as pembrolizumab, atezolizumab, or cemiplimab monotherapy have become a standard of care for ~25% of patients with NSCLC whose tumors have high PD-L1 expression (total proportion score (TPS) ≥50%) and no sensitizing EGFR/ALK alterations. Lastly, for the remaining ~50% of patients who are fit and whose tumors have no or low PD-L1 expression (TPS of 0-49%) and no sensitizing EGFR/ALK aberrations, platinum-containing chemotherapy with the addition of a PD-1/L1 inhibitor alone or in combination of a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor improves PFS and OS compared to chemotherapy alone. The objectives of this review are to summarize the current data and perspectives on first-line systemic treatment in patients with unresectable NSCLC and propose a practical algorithm for implementing precision biomarker testing at diagnosis.

6.
Cancers (Basel) ; 16(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001487

ABSTRACT

Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.

7.
Cancers (Basel) ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001498

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-ß), Notch, hypoxia-inducible factor (HIF), and Wnt/ß-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.

8.
Res Vet Sci ; 176: 105350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963993

ABSTRACT

Feline injection site fibrosarcomas represent a unique challenge in veterinary oncology due to their association with injection sites and aggressive behaviour. The study explores the expression of immune checkpoints programmed cell death protein 1 and programmed cell death ligand 1 in the malignancy, aiming to unravel their potential significance in tumour progression. The study included 31, archival diagnostic specimens of feline fibrosarcomas, located in the common injection sites. The programmed cell death protein 1 and programmed cell death ligand 1 expression in tumour cells and tumour infiltrating lymphocytes were assessed by immunohistochemical methods. Programmed cell death protein 1 and programmed cell death ligand 1 expression were observed in 84% and 81% of cases, respectively. In tumour infiltrating lymphocytes the PD-1 expression was observed in 71% of cases. Notably, higher programmed cell death protein 1 expression correlated with tumour grade and heightened inflammation score, suggesting a potential association with tumour aggressiveness. Similarly, programmed cell death ligand 1 expression exhibited a positive correlation with tumour grade and inflammation score. The observed findings suggest a potential role for programmed cell death protein 1 and programmed cell death ligand 1 in tumour progression and immune response within the tumour microenvironment. Moreover, this study contributes to a deeper understanding of feline injection site fibrosarcoma pathogenesis, emphasizing the importance of considering immunological perspectives in developing effective treatment strategies for this challenging condition. Further investigations are warranted to advance our knowledge and refine therapeutic approaches for feline injection site fibrosarcoma management.


Subject(s)
B7-H1 Antigen , Cat Diseases , Fibrosarcoma , Programmed Cell Death 1 Receptor , Animals , Cats , Fibrosarcoma/veterinary , Fibrosarcoma/pathology , Cat Diseases/pathology , Cat Diseases/chemically induced , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Female , Male , Lymphocytes, Tumor-Infiltrating/immunology , Immunohistochemistry/veterinary
9.
Nano Lett ; 24(28): 8741-8751, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953486

ABSTRACT

The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.


Subject(s)
Immunotherapy , Pancreatic Neoplasms , Prodrugs , Animals , Prodrugs/pharmacology , Prodrugs/therapeutic use , Prodrugs/chemistry , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Mice , Humans , Cell Line, Tumor , Proteolysis/drug effects , Ultrasonic Therapy/methods , B7-H1 Antigen , Transcription Factors , Cell Cycle Proteins , Reactive Oxygen Species/metabolism , Bromodomain Containing Proteins
10.
Lung Cancer ; 194: 107892, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018704

ABSTRACT

BACKGROUND: The predictive value of programmed death-ligand 1 (PD-L1) expression for the efficacy of tyrosine kinase inhibitors (TKIs) in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC) remains underexplored. This study analyzed patients with advanced NSCLC harboring ROS1 rearrangements who received first-line crizotinib to evaluate the correlation between baseline PD-L1 expression and crizotinib efficacy. METHODS: In this study, the clinical data from 371 patients diagnosed with ROS1-rearranged NSCLC at Shanghai Chest Hospital between November 2017 and December 2022 were reviewed. The patients were categorized into three groups according to the baseline PD-L1 expression: tumor proportion score (TPS) <1%, TPS 1 %-49 %, and TPS≥50 %. The objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS) following first-line crizotinib treatment were measured. RESULTS: A total of 64 patients were included in the analysis, with 16 patients in the TPS<1% group, 22 in the TPS 1 %-49 % group, and 26 in the TPS≥50 % group. The overall DCR was 100 %, and the overall ORR was 76.5 %. The ORRs were 81.2 % (13/16) in the TPS<1% group, 63.6 % (14/22) in the TPS 1 %-49 % group, and 84.6 % (22/26) in the TPS≥50 % group (p = 0.218). The median PFS across all patients was 20.21 months (95 % CI: 15.71-24.71), with a median PFS of 28.96 months (95 % CI: 19.87-38.04) in the TPS<1% group, 17.56 months (95 % CI: 12.25-22.86) in the TPS 1 %-49 % group, and 25.85 months (95 % CI: 18.52-33.17) in the TPS≥50 % group (p = 0.100). The median PFS for patients with CD74 fusion was 18.23 months (95 % CI: 15.24-21.22), while those with non-CD74 fusion exhibited a PFS of 16.49 months (95 % CI: 9.75-23.23) (p = 0.359). CONCLUSION: Patients with advanced ROS1-rearranged NSCLC were found to benefit from first-line crizotinib treatment, irrespective of baseline PD-L1 expression.

11.
Article in English | MEDLINE | ID: mdl-39021191

ABSTRACT

BACKGROUND: The mechanism of action of envafolimab (also known as KN035), a programmed death ligand 1 (PD-L1) inhibitor, in gastric adenocarcinoma patients with low PD-L1 expression is not well understood. AIMS: This study aimed to observe the efficacy of envafolimab in gastric adenocarcinoma with low PD-L1 expression and explore the underlying mechanisms. OBJECTIVE: The objective of this study was to explore the underlying mechanism of envafolimab in gastric cancer with low PD-L1 expression. METHOD: Cytotoxicity and proliferation were evaluated by a CCK8 assay. Transwell assays were used to detect the migration and invasion ability of gastric cancer cells. The effect of envafolimab on the apoptosis of gastric cancer cells was detected by flow cytometry. The effect of envafolimab on gastric cancer cells with low PD-L1 expression was investigated via proteomics and bioinformatics analysis. RESULT: A total of 19 patients with advanced gastric adenocarcinoma who received envafolimab monotherapy or combination therapy were reviewed. Among them, 4 patients had low PD-L1 expression, the objective response rate (ORR) was 75% (3/4), and the disease control rate (DCR) was 100% (4/4). In vitro experiments showed that envafolimab inhibited the proliferation, invasion, and migration of gastric cancer cells with low expression of PD-L1 and induced cell apoptosis. DDX20 may be the target of envafolimab in gastric cancer cells, and it is related to the NF-κB signaling pathway. Western blot results showed that the protein expressions of DDX20, NF-κB p65, and TNF-α in gastric cancer cells were decreased after adding envafolimab. Furthermore, the DDX20 gene was silenced by small interfering RNA to further study the effect of DDX20 on PDL1 low expression in gastric cancer cells. CONCLUSION: This study confirmed that envafolimab could inhibit the growth of gastric cancer cells with low PD-L1 expression by down-regulating DDX20 expression and regulating the NFκB/TNF-α signaling pathway.

12.
Mol Cancer ; 23(1): 146, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014460

ABSTRACT

The advent of PD1/PD-L1 inhibitors has significantly transformed the therapeutic landscape for clear cell renal cell carcinoma (ccRCC). This review provides an in-depth analysis of the biological functions and regulatory mechanisms of PD1 and PD-L1 in ccRCC, emphasizing their role in tumor immune evasion. We comprehensively evaluate the clinical efficacy and safety profiles of PD1/PD-L1 inhibitors, such as Nivolumab and Pembrolizumab, through a critical examination of recent clinical trial data. Furthermore, we discuss the challenges posed by resistance mechanisms to these therapies and potential strategies to overcome them. We also explores the synergistic potential of combination therapies, integrating PD1/PD-L1 inhibitors with other immunotherapies, targeted therapies, and conventional modalities such as chemotherapy and radiotherapy. In addition, we examine emerging predictive biomarkers for response to PD1/PD-L1 blockade and biomarkers indicative of resistance, providing a foundation for personalized therapeutic approaches. Finally, we outline future research directions, highlighting the need for novel therapeutic strategies, deeper mechanistic insights, and the development of individualized treatment regimens. Our work summarizes the latest knowledge and progress in this field, aiming to provide a valuable reference for improving clinical efficacy and guiding future research on the application of PD1/PD-L1 inhibitors in ccRCC.


Subject(s)
B7-H1 Antigen , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Programmed Cell Death 1 Receptor , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/therapy , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Biomarkers, Tumor , Treatment Outcome , Animals , Drug Resistance, Neoplasm , Molecular Targeted Therapy , Immunotherapy/methods
13.
J Comp Pathol ; 213: 10-19, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025037

ABSTRACT

In this study, the immunohistochemical expression of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1), which could facilitate a novel approach to immunotherapy for feline injection site sarcomas (FISSs), was investigated. Treatment strategies based on the suppression of this pathway are possible for tumours expressing PD-1/PD-L1. In this context, FISSs were histologically classified, the grade of sarcoma and the intensity of lymphocyte infiltration determined and PD-1 and PD-L1 expression evaluated in tumours of different grade. Tumours were immunolabelled for vimentin, S100, smooth muscle actin and sarcomeric actin. Fibrosarcoma was diagnosed in eight cases, undifferentiated sarcoma in one case, liposarcoma in one case and rhabdomyosarcoma in one case. PD-1 expression was found mainly in lymphoid infiltrations and macrophage-like cells, while PD-L1 was found primarily in tumour cells and infiltrated macrophage-like cells. By Pearson correlation analysis, tumour differentiation was found to have a moderate correlation with PD-1 (P <0.05) and a high correlation with PD-L1 (P <0.01). Tumour grade had a low correlation with PD-1 and a moderate correlation with PD-L1 (P >0.05). A moderate correlation was also detected between PD-1 and PD-L1 (P <0.05). It was concluded that the increased expression of PD-1 and PD-L1 may be associated with poor tumour differentiation and, therefore, poor prognosis in FISS.

14.
Bioorg Med Chem Lett ; 110: 129882, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996937

ABSTRACT

We present new small-molecular probes targeting the human PD-L1 protein. The molecules were designed by incorporating a newly discovered N-methylmorpholine substituent into a known biphenyl-based structure. Four prototype derivatives of 4-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-carbonitrile (STD4), comprising a morpholine substituent fused with a biphenyl core at different orientations were first verified for their potential binding to PD-L1 using the molecular docking method. A more favorable 7-phenyl derivative of STD4 was then equipped with an amide bond, pyridine, and either a tris(hydroxymethyl)aminomethane or serinol tail leading to two final molecules. Among them, compound 1c showed activity in three bioassays, i.e., the homogenous time-resolved fluorescence (HTRF) assay, immune checkpoint blockade (ICB) assay, and T-cell activation (TCA) assay. Our work shows that morpholine can substitute for dioxane and becomes a promising component in PD-L1-targeting molecules. This finding unlocks new avenues for optimizing PD-L1-targeting compounds, presenting exciting prospects for future developments in this field.

15.
Adv Sci (Weinh) ; : e2310037, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953362

ABSTRACT

Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.

16.
J Extracell Vesicles ; 13(7): e12480, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978304

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.


Subject(s)
5'-Nucleotidase , B7-H1 Antigen , Extracellular Vesicles , Head and Neck Neoplasms , Neutrophils , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , B7-H1 Antigen/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Neutrophils/metabolism , Neutrophils/immunology , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , 5'-Nucleotidase/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Cell Line, Tumor , Immunomodulation , Adenosine/metabolism , GPI-Linked Proteins
17.
Cancer Med ; 13(13): e7431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978333

ABSTRACT

BACKGROUND: Cancer utilizes immunosuppressive mechanisms to create a tumor microenvironment favorable for its progression. The purpose of this study is to histologically characterize the immunological properties of the tumor microenvironment of oral squamous cell carcinoma (OSCC) and identify key molecules involved in the immunological microenvironment and patient prognosis. METHODS: First, overlapping differentially expressed genes (DEGs) were screened from OSCC transcriptome data in public databases. Correlation analysis of DEGs with known immune-related genes identified genes involved in the immune microenvironment of OSCC. Next, stromal patterns of tumor were classified and immunohistochemical staining was performed for immune cell markers (CD3, CD4, Foxp3, CD8, CD20, CD68, and CD163), programmed death-ligand 1 (PD-L1), and guanylate binding protein 5 (GBP5) in resected specimens obtained from 110 patients with OSCC who underwent resection. Correlations between each factor and their prognostic impact were analyzed. RESULTS: Among the novel OSCC-specific immune-related genes screened (including ADAMDEC1, CXCL9, CXCL13, DPT, GBP5, IDO1, and PLA2G7), GBP5 was selected as the target gene. Histopathologic analysis showed that multiple T-cell subsets and CD20-positive cells were less common in the advanced stages, whereas CD163-positive cells were more common in advanced stages. The immature type in the stromal pattern category was associated with less immune cell infiltration, lower expression of PD-L1 in immune cells, lower expression of GBP5 in the stroma, and shorter overall survival and recurrence-free survival. Expression of GBP5 in the tumor and stroma correlated with immune cell infiltration of tumors and PD-L1 expression in tumor and immune cells. Patients with low tumor GBP5 expression and high stromal expression had significantly longer overall survival and recurrence-free survival. CONCLUSIONS: The stromal pattern category may reflect both invasive and immunomodulatory potentials of cancer-associated fibroblasts in OSCC. GBP5 has been suggested as a potential biomarker to predict the prognosis and therapeutic efficacy of immune checkpoint inhibitors.


Subject(s)
Biomarkers, Tumor , Computational Biology , Mouth Neoplasms , Tumor Microenvironment , Adult , Aged , Female , Humans , Male , Middle Aged , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/metabolism , Computational Biology/methods , Gene Expression Regulation, Neoplastic , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Mouth Neoplasms/metabolism , Mouth Neoplasms/surgery , Prognosis , Retrospective Studies , Tumor Microenvironment/immunology
18.
ACS Nano ; 18(29): 18963-18979, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39004822

ABSTRACT

Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.


Subject(s)
Chitosan , Drug Delivery Systems , Hydrogels , Immune Checkpoint Inhibitors , Nanocomposites , Ovarian Neoplasms , Peritoneal Neoplasms , Animals , Hydrogels/chemistry , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/pathology , Mice , Chitosan/chemistry , Chitosan/analogs & derivatives , Female , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Nanocomposites/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Mice, Inbred BALB C , Glycerol/chemistry , Glycerol/analogs & derivatives , Cell Line, Tumor , Polymers/chemistry , Polyesters
19.
Front Immunol ; 15: 1408928, 2024.
Article in English | MEDLINE | ID: mdl-39035009

ABSTRACT

Objective: To determine the cost-effectiveness of imported immune checkpoint inhibitors (ICIs) such as atezolizumab and durvalumab, and domestic ICIs like serplulimab and adebrelimab, in combination with chemotherapy for extensive-stage small cell lung cancer (ES-SCLC) in China. Methods: Using a 21-day cycle length and a 20-year time horizon, a Markov model was established to compare the clinical and economic outcomes of five first-line ICIs plus chemotherapy versus chemotherapy alone, as well as against each other, from the perspective of the Chinese healthcare system. Transition probabilities were estimated by combining the results of the CAPSTONE-1 trial and a published network meta-analysis. Cost and health state utilities were collected from multiple sources. Both cost and effectiveness outcomes were discounted at a rate of 5% annually. The primary model output was incremental cost-effectiveness ratios (ICERs). A series of sensitivity analyses were preformed to assess the robustness of the model. Results: In the base-case analysis, the addition of first-line ICIs to chemotherapy resulted in the ICERs ranged from $80,425.31/QALY to $812,415.46/QALY, which exceeded the willing-to-pay threshold set for the model. When comparing these first-line immunochemotherapy strategies, serplulimab plus chemotherapy had the highest QALYs of 1.51286 and the second lowest costs of $60,519.52, making it is the most cost-effective strategy. Our subgroup-level analysis yielded results that are consistent with the base-case analysis. The sensitivity analysis results confirmed the validity and reliability of the model. Conclusion: In China, the combination of fist-line ICIs plus chemotherapy were not considered cost-effective when compared to chemotherapy alone. However, when these fist-line immunochemotherapy strategies were compared with each other, first-line serplulimab plus chemotherapy consistently demonstrated superiority in terms of cost-effectiveness. Reducing the cost of serplulimab per 4.5 mg/kg would be a realistic step towards making first-line serplulimab plus chemotherapy more accessible and cost-effective.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cost-Benefit Analysis , Immune Checkpoint Inhibitors , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/economics , Lung Neoplasms/drug therapy , Lung Neoplasms/economics , China , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/economics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/economics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Quality-Adjusted Life Years , Neoplasm Staging , Markov Chains , Cost-Effectiveness Analysis
20.
Front Cell Infect Microbiol ; 14: 1392744, 2024.
Article in English | MEDLINE | ID: mdl-39035356

ABSTRACT

Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods: We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results: A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion: We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.


Subject(s)
B7-H1 Antigen , Disease Models, Animal , Interleukin-10 , Lectins, C-Type , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Paracoccidioidomycosis , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Mice , Interleukin-10/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Paracoccidioidomycosis/immunology , Paracoccidioides/immunology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , T-Lymphocytes, Regulatory/immunology , Lung/immunology , Lung/microbiology , Signal Transduction , Male , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...