Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 696: 149542, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38244315

ABSTRACT

PDZ domain-containing RING finger family protein 3 (PDZRN3) is expressed in various tissues, including the skeletal muscle. Although PDZRN3 plays a crucial role in the terminal differentiation of myoblasts and synaptic growth/maturation in myogenesis, the role of this molecule in postnatal muscles is completely unknown despite its lifelong expression in myofibers. In this study, we aimed to elucidate the function of PDZRN3 in mature myofibers using myofiber-specific conditional knockout mice. After tamoxifen injection, PDZRN3 deficiency was confirmed in both fast and slow myofibers of Myf6-CreERT2; Pdzrn3flox/flox (Pdzrn3mcKO) mice. Transcriptome analysis of the skeletal muscles of Pdzrn3mcKO mice identified differentially expressed genes, including muscle atrophy-related genes such as Smox, Amd1/2, and Mt1/2, suggesting that PDZRN3 is involved in the homeostatic maintenance of postnatal muscles. PDZRN3 deficiency caused muscle atrophy, predominantly in fast-twitch (type II) myofibers, and reduced muscle strength. While myofiber-specific PDZRN3 deficiency did not influence endplate morphology or expression of neuromuscular synaptic formation-related genes in postnatal muscles, indicating that the relationship between PDZRN3 and neuromuscular junctions might be limited during muscle development. Considering that the expression of Pdzrn3 in skeletal muscles was significantly lower in aged mice than in mature adult mice, we speculated that the PDZRN3-mediated muscle maintenance system might be associated with the pathophysiology of age-related muscle decline, such as sarcopenia.


Subject(s)
Muscle, Skeletal , Sarcopenia , Mice , Animals , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Neuromuscular Junction/pathology , Sarcopenia/pathology , Myoblasts/metabolism , Mice, Knockout , Ubiquitin-Protein Ligases/metabolism
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34135125

ABSTRACT

Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a ß-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.


Subject(s)
Proteomics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , Wnt-5a Protein/metabolism , Animals , Cell Movement , Mice , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Proteolysis , Reproducibility of Results , Ubiquitin/metabolism
3.
J Physiol Sci ; 69(4): 635-642, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31098988

ABSTRACT

Sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8) mediates monocarboxylate transport in the proximal tubule of the kidney. We have identified PDZK1 and PDZ domain-containing RING finger 3 (PDZRN3) as potent binding partners of SMCT1, which has a PDZ motif (Thr-Arg-Leu), by yeast two-hybrid screening and revealed that PDZK1 enhances the transport activity of SMCT1. In this study, we aimed to characterize the interaction between SMCT1 and PDZRN3 as well as to examine how PDZRN3 regulates SMCT1 function. An interaction between SMCT1 and PDZRN3 through the PDZ motif was observed in a co-immunoprecipitation assay and yeast two-hybrid assay. A transport assay showed that PDZRN3 abolished the enhancing effect of PDZK1 on nicotinate uptake via SMCT1. Our results suggest that SMCT1 interacts with PDZRN3 and that PDZRN3 may regulate SMCT1 function by interfering with the interaction between SMCT1 and PDZK1.


Subject(s)
Carrier Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Biological Transport/physiology , Cell Line , HEK293 Cells , Humans , Protein Interaction Domains and Motifs/physiology , Sodium , Ubiquitin-Protein Ligases
4.
J Cell Physiol ; 234(3): 2963-2972, 2019 03.
Article in English | MEDLINE | ID: mdl-30066954

ABSTRACT

PDZRN3 (also known as LNX3) is a member of the PDZ domain-containing RING finger protein family. We previously showed that PDZRN3 is essential for differentiation of myoblasts into myotubes and that depletion of PDZRN3 inhibits such differentiation downstream of the upregulation of myogenin, a basic helix-loop-helix (bHLH) transcription factor required for completion of the differentiation process. However, the mechanism by which PDZRN3 controls this process has remained unclear. Myogenin is rendered active during the late stage of myogenic differentiation by the downregulation of Id2, a negative regulator of bHLH transcription factors. We now show that depletion of PDZRN3 inhibits the differentiation of C2C12 cells by inducing the upregulation of Id2 and thereby delaying its downregulation. Knockdown of Id2 by RNA interference restores the differentiation of PDZRN3-depleted cells. Luciferase reporter assays revealed that a putative binding site for STAT5b in the Id2 gene promoter is required for the upregulation of Id2 expression by PDZRN3 depletion. In addition, the amount of phosphorylated Id2 was reduced and that of the nonphosphorylated protein concomitantly increased in PDZRN3-depleted cells, with the inhibitory effect of Id2 on bHLH transcription factors having previously been shown to be attenuated by phosphorylation of Id2 catalyzed by the complex of Cdk2 with cyclin A2 or E1. Indeed, the expression of cyclin A2, but not that of cyclin E1, was reduced in PDZRN3-depleted cells. Our results thus indicate that PDZRN3 plays a key role in the differentiation of myoblasts into myotubes by regulating Id2 at both transcriptional and posttranslational levels.


Subject(s)
Cell Differentiation/genetics , Inhibitor of Differentiation Protein 2/genetics , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Animals , Binding Sites , Cell Line , Cyclin A2/genetics , DNA-Binding Proteins/genetics , Humans , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Processing, Post-Translational/genetics , STAT5 Transcription Factor/genetics
5.
Neuron ; 98(5): 945-962.e8, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29779941

ABSTRACT

The epigenetic landscape is dynamically remodeled during neurogenesis. However, it is not understood how chromatin modifications in neural stem cells instruct the formation of complex structures in the brain. We report that the histone methyltransferase PRDM16 is required in radial glia to regulate lineage-autonomous and stage-specific gene expression programs that control number and position of upper layer cortical projection neurons. PRDM16 regulates the epigenetic state of transcriptional enhancers to activate genes involved in intermediate progenitor cell production and repress genes involved in cell migration. The histone methyltransferase domain of PRDM16 is necessary in radial glia to promote cortical neuron migration through transcriptional silencing. We show that repression of the gene encoding the E3 ubiquitin ligase PDZRN3 by PRDM16 determines the position of upper layer neurons. These findings provide insights into how epigenetic control of transcriptional enhancers in radial glial determines the organization of the mammalian cerebral cortex.


Subject(s)
Cell Movement/genetics , Cerebral Cortex/embryology , DNA-Binding Proteins/genetics , Ependymoglial Cells/metabolism , Gene Expression Regulation, Developmental , Neural Stem Cells , Neurons , Transcription Factors/genetics , Animals , Cerebral Cortex/cytology , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Mice , Neurogenesis , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Am J Physiol Cell Physiol ; 304(11): C1091-7, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23576576

ABSTRACT

PDZRN3, a member of the PDZRN (or LNX) family of proteins, is essential for the differentiation of mesenchymal stem cells into myotubes, but it plays an inhibitory role in the differentiation of these cells into osteoblasts. Given that mesenchymal stem cells also differentiate into adipocytes, we examined the possible role of PDZRN3 in adipogenesis in mouse 3T3-L1 preadipocytes. The expression of PDZRN3 decreased at both the mRNA and protein levels during adipogenic differentiation. RNAi-mediated depletion of PDZRN3 enhanced the differentiation of 3T3-L1 cells into adipocytes as assessed on the basis of lipid accumulation. The upregulation of aP2 and CCAAT/enhancer-binding protein (C/EBP)-ß during adipocyte differentiation was also enhanced in the PDZRN3-depleted cells, as was the induction of peroxisome proliferator-activated receptor-γ (PPARγ), an upstream regulator of aP2 and C/EBPα, at both the mRNA and protein levels. Among transcription factors that control the expression of PPARγ, we found that STAT5b, but not STAT5a, was upregulated in PDZRN3-depleted cells at both mRNA and protein levels. Tyrosine phosphorylation of STAT5b, but not that of STAT5a, was also enhanced at an early stage of differentiation by PDZRN3 depletion. In addition, the expression of C/EBPß during the induction of differentiation was enhanced at the mRNA and protein levels in PDZRN3-depleted cells. Our results thus suggest that PDZRN3 negatively regulates adipogenesis in 3T3-L1 cells through downregulation of STAT5b and C/EBPß and consequent suppression of PPARγ expression.


Subject(s)
Adipocytes/cytology , Adipogenesis/physiology , Carrier Proteins/metabolism , Cell Differentiation/physiology , Gene Expression Regulation/physiology , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Immunoblotting , Immunoprecipitation , Mice , PPAR gamma/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT5 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL