ABSTRACT
Perfluoroalkyl substances are man-made chemicals with ample consumer and industrial applications. They are widely used and are resistant to environmental and metabolic degradation. Several studies have evaluated the effects of Perfluorohexane sulfonate on reproduction. However, there are few reports exploring the cell and molecular mechanisms of its toxicity in the ovary. The aim of this study was to investigate the effects of PFHxS exposure on the estrous cycle, ovulation rate, and the underlying mechanisms of action in female mice in vivo. The animals received a single sub-lethal dose of PFHxS (25.1 mg/kg, 62.5 mg/kg) or vehicle and were stimulated to obtain immature cumulus cell-oocyte complexes (COCs) from the ovaries, or superovulated to develop mature COCs. To evaluate oocyte physiology, Gap-junction intercellular communication (GJIC) was analyzed in immature COCs and calcium homeostasis was evaluated in mature oocytes. PFHxS exposure prolonged the estrous cycle and decreased ovulation rate in female mice. Connexins, Cx43 and Cx37, were downregulated and GJIC was impaired in immature COCs, providing a possible mechanism for the alterations in the estrous cycle and ovulation. No morphological abnormalities were observed in the mature PFHxS-exposed oocytes, but calcium homeostasis was affected. This effect is probably due, at least partially, to deregulation of the endoplasmic reticulum calcium modulator, Stim1. These mechanisms of ovarian injury could explain the reported correlation among PFHxS levels and subfertility in women undergoing fertility treatments.
Subject(s)
Calcium , Fluorocarbons , Female , Mice , Animals , Calcium/metabolism , Oocytes/physiology , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Ovulation , Alkanesulfonates/metabolism , Alkanesulfonates/pharmacology , Hormone Antagonists/pharmacology , Cell Communication/physiology , Estrous Cycle , HomeostasisABSTRACT
Perfluorohexane sulfonate (PFHxS) is one of the most abundant perfluorinated compounds in the environment. Exposure to this compound has been correlated to a decrease in human fertility, although the molecular and cellular mechanisms underlying this correlation have not been described. The adverse reproductive effects of PFHxS could be based on alterations in oocyte maturation, the process rendering oocytes competent for fertilization. The aim of this study was to evaluate the effect of PFHxS on porcine oocyte viability and maturation in vitro, as well as on gap-junctional intercellular communication (GJIC) in cumulus-oocyte complexes (COCs), oocyte mitochondrial membrane potential (mΔΨ) and DNA damage in cumulus cells, as possible mechanisms of action. PFHxS caused cytotoxicity (medium lethal concentration, LC50â¯=â¯329.1⯵M) and inhibition of oocyte maturation (medium inhibitory concentration, MIC50â¯=â¯91.68⯵M). GJIC was not affected in exposed COCs. However, the mitochondrial membrane potential was significantly decreased in PFHxS-exposed oocytes at the germinal vesicle breakdown (GVBD) stage. In addition, exposure to PFHxS induced DNA damage in cumulus cells. Thus, inhibition of oocyte maturation by PFHxS could be attributed to a decreased oocyte mΔΨ at the GVBD and to DNA damage of the cumulus cells that support the oocyte.
Subject(s)
Cumulus Cells/drug effects , Sulfonic Acids/toxicity , Animals , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cumulus Cells/physiology , DNA Damage , Female , Fluorocarbons , Gap Junctions/drug effects , Membrane Potential, Mitochondrial/drug effects , Oocytes/drug effects , Oocytes/physiology , SwineABSTRACT
Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) are toxic and bioaccumulative, included in the Stockholm Convention's list as persistent organic pollutants. Due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes, the present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation. The spermatozoa capacitation was performed in supplemented TALP-Hepes media and mean lethal concentration values of 460.55 µM for PFOS, and 1930.60 µM for PFHxS were obtained. Results by chlortetracycline staining showed that intracellular Ca2+ patterns bound to membrane proteins were scarcely affected by PFOS. The spontaneous acrosome reaction determined by FITC-PNA was significantly reduced by PFOS and slightly increased by PFHxS. Both toxic compounds significantly alter the normal capacitation process from 30 min of exposure. An increase in ROS production was observed by flow cytometry and considerable DNA fragmentation by the comet assay. The immunocytochemistry showed a decrease of tyrosine phosphorylation in proteins of the equatorial and acrosomal zone of the spermatozoa head. In conclusion, PFOS and PFHxS have toxic effects on the sperm, causing mortality and altering vital parameters for proper sperm capacitation.