Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.520
Filter
1.
Front Oncol ; 14: 1372947, 2024.
Article in English | MEDLINE | ID: mdl-38952553

ABSTRACT

Background: Breast cancer is the leading cause of cancer death among women worldwide. Studies about the genomic landscape of metastatic breast cancer (MBC) have predominantly originated from developed nations. There are still limited data on the molecular epidemiology of MBC in low- and middle-income countries. This study aims to evaluate the prevalence of mutations in the PI3K-AKT pathway and other actionable drivers in estrogen receptor (ER)+/HER2- MBC among Brazilian patients treated at a large institution representative of the nation's demographic diversity. Methods: We conducted a retrospective observational study using laboratory data (OC Precision Medicine). Our study included tumor samples from patients with ER+/HER2- MBC who underwent routine tumor testing from 2020 to 2023 and originated from several Brazilian centers within the Oncoclinicas network. Two distinct next-generation sequencing (NGS) assays were used: GS Focus (23 genes, covering PIK3CA, AKT1, ESR1, ERBB2, BRCA1, BRCA2, PALB2, TP53, but not PTEN) or GS 180 (180 genes, including PTEN, tumor mutation burden [TMB] and microsatellite instability [MSI]). Results: Evaluation of tumor samples from 328 patients was undertaken, mostly (75.6%) with GS Focus. Of these, 69% were primary tumors, while 31% were metastatic lesions. The prevalence of mutations in the PI3K-AKT pathway was 39.3% (95% confidence interval, 33% to 43%), distributed as 37.5% in PIK3CA and 1.8% in AKT1. Stratification by age revealed a higher incidence of mutations in this pathway among patients over 50 (44.5% vs 29.1%, p=0.01). Among the PIK3CA mutations, 78% were canonical (included in the alpelisib companion diagnostic non-NGS test), while the remaining 22% were characterized as non-canonical mutations (identifiable only by NGS test). ESR1 mutations were detected in 6.1%, exhibiting a higher frequency in metastatic samples (15.1% vs 1.3%, p=0.003). Additionally, mutations in BRCA1, BRCA2, or PALB2 were identified in 3.9% of cases, while mutations in ERBB2 were found in 2.1%. No PTEN mutations were detected, nor were TMB high or MSI cases. Conclusion: We describe the genomic landscape of Brazilian patients with ER+/HER2- MBC, in which the somatic mutation profile is comparable to what is described in the literature globally. These data are important for developing precision medicine strategies in this scenario, as well as for health systems management and research initiatives.

2.
Phytomedicine ; 132: 155844, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959552

ABSTRACT

BACKGROUND: Chronic cerebral hypoperfusion (CCH) has been confirmed as one of the pathogenesis underlying vascular cognitive impairment. A series of pathological changes, including inflammation, oxidative stress, and apoptosis, are involved in this pathophysiology and contribute to cognitive impairment and neuropathological alterations. The traditional Chinese medicine (TCM) of Buqi Huoxue Tongnao (BQHXTN) prescription possesses a remarkable clinical efficacy for treating patients with CCH, but still lacks a scientific foundation for its pharmacological mechanisms. PURPOSE: To investigate the role and underlying mechanism of the effects of BQHXTN on CCH both in vitro and in vivo. METHODS: In this study, we established a two-vessel occlusion (2-VO) induced CCH model in Sprague-Dawley rats, an oxygen-glucose deprivation model in BV2 cells, and a steatosis cell model in L02 cells to reveal the underlying mechanisms of BQHXTN by behavioral test, histopathological analysis and the detection of pro-inflammatory cytokine, apoptotic factors and reactive oxide species. Donepezil hydrochloride and Buyang Huanwu decoction were used as positive drugs. RESULTS: Compared with the 2-VO group, BQHXTN treatment at three doses significantly enhanced the memory and learning abilities in the Y-maze and novel object recognition tests. The hematoxylin-eosin staining indicated that BQHXTN protected against hippocampal injury induced by CCH. Of note, in both in vivo and in vitro experiments, BQHXTN prominently inhibited the production of IL-1ß, TNF-α, cleaved-caspase 3, and iNOS by regulating the PI3K/AKT pathway, consequently exerting anti-inflammatory, anti-apoptotic, and antioxidant effects. Moreover, it provided the first initial evidence that BQHXTN treatment mitigated dyslipidemia by increasing the LXRα/CYP7A1 expression, thereby delaying the neuropathological process. CONCLUSION: In summary, these findings firstly revealed the pharmacodynamics and mechanism of BQHXTN, that is, BQHXTN could alleviate cognitive impairment, neuropathological alterations and dyslipidemia in CCH rats by activating PI3K/AKT and LXRα/CYP7A1 signaling pathways, as well as providing a TCM treatment strategy for CCH.

3.
Ecotoxicol Environ Saf ; 282: 116686, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971100

ABSTRACT

Constituents of cigarette smoke are known to be carcinogens. Additionally, there is mounting evidence that the liver is an organ susceptible to tobacco carcinogenicity. Nicotine, the primary constituent of tobacco, plays a role in cancer progression. In our previous study, it was found that nicotine enhances the proliferation of a human normal fetal hepatic (WRL68) cell due to the activation of p53 mutation at Ser249 (p53-RS)/STAT1/CCND1 signaling pathway. Here, we further elucidated the mechanism of regulating this pathway. Firstly, dose-dependent increase of SETDB1 protein level in WRL68 cells upon exposure to nicotine (1.25, 2.5, and 5 µM), significantly enhanced cellular proliferation. In addition, the upregulation of SETDB1 protein was necessary for the nuclear translocation of p53-RS to establish a ternary complex with STAT1 and SETDB1, which facilitated p53-RS di-methylation at K370 (p53-RS/K370me2). After that, the activation of CCND1/PI3K/AKT pathway was initiated when STAT1 stability was enhanced by p53-RS/K370me2, ultimately resulting in cell proliferation. Altogether, the study revealed that the increase in SETDB1 expression could potentially have a significant impact on the activation of CCND1/PI3K/AKT pathway through p53-RS/K370me2, leading to the proliferation of WRL68 cells induced by nicotine, which could contribute to hepatocellular carcinoma for smokers. Besides, the results of this study provided a foundation for the development of anticancer therapies for cancers associated with tobacco use.

4.
Arch Dermatol Res ; 316(7): 468, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002062

ABSTRACT

Epidermal Growth Factor Receptor Inhibitors (EGFRIs) is a common cancer therapy, but they occasionally cause severe side effects such as xerosis. Tiansha mixture (TM), a traditional Chinese medicines formulation, is develpoed to treat xerosis. This study aims to understand mechanisms of TM on xerosis. Bio-active compounds were selected from databases (TCMSP, TCM-ID, HERB, ETCM) and removed for poor oral bioavailability and low drug likeness. Then a network-based approach filtered out potential active compounds against xerosis. KEGG enrichment analysis identified PI3K/AKT and ERK/MAPK pathways, which were further verified by molecular docking. Afterwards, the effect of TM on activation of PI3K/AKT and ERK/MAPK pathways was validated in gefitinib-induced xerosis rats, where AKT-activator SC79 and MAPK-activator CrPic were also applied. Skin damage was assessed by dorsal score and HE and Tunel stainings. the levels of inflammation factors IL-6 and TNF-α in serum and skin tissue were measured by ELISA. Western blot was used to detect protein levels in the pathways. Network pharmacology identified 111 bio-active compounds from TM and 14 potential targets. Docking simulation showed apigenin, luteolin, and quercetin bio-active compounds in TM bound to IKBKG, INSR, and RAF-1 proteins. In xerosis model rats, TM mitigated xerosis damage, decreased inflammation factors, and phosphorylation of PI3K/AKT and ERK/MAPK proteins. SC79 or CrPic or their combination reversed TM's effect. The current study identified potential targets and PI3K/AKT and ERK/MAPK pathways involved in the effect of TM on xerosis, thus providing a foundation for TM clinical application.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Animals , Network Pharmacology/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Rats , Disease Models, Animal , Humans , Proto-Oncogene Proteins c-akt/metabolism , Male , Skin/drug effects , Skin/pathology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/drug effects , Interleukin-6/metabolism
5.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994756

ABSTRACT

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem­like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti­tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)­resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit­8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT­related proteins and stem cell markers after sphere formation. Parental cells and drug­resistant cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX­resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug­resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX­resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX­resistant ESCC and could be a promising agent for the treatment of PTX­resistant ESCC cancers.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Luteolin , Paclitaxel , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Luteolin/pharmacology , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Signal Transduction/drug effects , Mice , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Mice, Nude , Cell Movement/drug effects , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Male
6.
J Exp Clin Cancer Res ; 43(1): 201, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030572

ABSTRACT

BACKGROUND: Studies have confirmed that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties are conducive to cancer metastasis. In recent years, testes-specific protease 50 (TSP50) has been identified as a prognostic factor and is involved in tumorigenesis regulation. However, the role and molecular mechanisms of TSP50 in EMT and CSC-like properties maintenance remain unclear. METHODS: The expression and prognostic value of TSP50 in breast cancer were excavated from public databases and explored using bioinformatics analysis. Then the expression of TSP50 and related genes was further validated by quantitative RT-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC). In order to investigate the function of TSP50 in breast cancer, loss- and gain-of-function experiments were conducted, both in vitro and in vivo. Furthermore, immunofluorescence (IF) and immunoprecipitation (IP) assays were performed to explore the potential molecular mechanisms of TSP50. Finally, the correlation between the expression of TSP50 and related genes in breast cancer tissue microarray and clinicopathological characteristics was analyzed by IHC. RESULTS: TSP50 was negatively correlated with the prognosis of patients with breast cancer. TSP50 promoted CSC-like traits and EMT in both breast cancer cells and mouse xenograft tumor tissues. Additionally, inhibition of PI3K/AKT partly reversed TSP50-induced activation of CSC-like properties, EMT and tumorigenesis. Mechanistically, TSP50 and PI3K p85α regulatory subunit could competitively interact with the PI3K p110α catalytic subunit to promote p110α enzymatic activity, thereby activating the PI3K/AKT signaling pathway for CSC-like phenotypes maintenance and EMT promotion. Moreover, IHC analysis of human breast cancer specimens revealed that TSP50 expression was positively correlated with p-AKT and ALDH1 protein levels. Notably, breast cancer clinicopathological characteristics, such as patient survival time, tumor size, Ki67, pathologic stage, N stage, estrogen receptor (ER) and progesterone receptor (PR) levels, correlated well with TSP50/p-AKT/ALDH1 expression status. CONCLUSION: The effects of TSP50 on EMT and CSC-like properties promotion were verified to be dependent on PI3K p110α. Together, our study revealed a novel mechanism by which TSP50 facilitates the progression of breast cancer, which can provide new insights into TSP50-based breast cancer treatment strategies.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Animals , Cell Line, Tumor , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Prognosis , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Cell Proliferation
7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3280-3287, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041090

ABSTRACT

Based on the insulin receptor substrate(IRS)/phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) pathway, the intervention effect of Yupingfeng Powder on type 2 diabetes mellitus(T2DM) rats was studied, and the potential mechanism of improving T2DM hepatic insulin resistance was explored. A T2DM rat model was established by feeding with high-fat and high-sugar feed combined with intraperitoneal injection of streptozotocin. Successfully modeled rats were selected and divided into a model group, a positive control group(MET), and a Yupingfeng Powder group. At the same time, a blank group was set up, and corresponding drugs were given by gavage. The model group and blank group were given an equal amount of physiological saline by gavage. During the experiment, body mass and fasting blood glucose were regularly measured, and glucose tolerance and insulin tolerance were measured at the end of the experiment. After the experiment, the levels of blood glucose, insulin, blood lipids, and related liver function indicators were measured; changes in liver pathological damage were observed, levels of liver monoamine oxidase were detected, and qRT-PCR was used to detect mRNA expression levels of IRS/PI3K/Akt pathway related genes. Compared with the model group, the Yupingfeng Powder group had an increase in body weight, a decrease in fasting blood glucose, fasting insulin, and steady-state model evaluation index, a decrease in the area under the curve of glucose tolerance and insulin tolerance tests, a decrease in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol content, and an increase in high-density lipoprotein cholesterol content. Compared with the model group, the Yupingfeng Powder group showed a decrease in liver monoamine oxidase levels, a decrease in serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and an increase in total protein and albumin levels. Hematoxylin-eosin(HE) staining showed a reduction in pathological liver cell damage. Compared with the model group, the Yupingfeng Powder group showed a significant increase in the mRNA expression levels of IRS1, PI3K, and Akt in the liver of rats, as well as a significant decrease in the mRNA expression levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). This indicates that Yupingfeng Powder can regulate the IRS/PI3K/Akt signaling pathway and glucose and lipid metabolism disorders, increase insulin sensitivity, improve hepatic insulin resistance, and thus play a therapeutic role in T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Insulin Receptor Substrate Proteins , Insulin Resistance , Liver , Phosphatidylinositol 3-Kinases , Powders , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Liver/metabolism , Liver/drug effects , Male , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Signal Transduction/drug effects , Rats, Sprague-Dawley , Blood Glucose/metabolism , Insulin/metabolism , Humans
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1117-1125, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977341

ABSTRACT

OBJECTIVE: To investigate the mechanism by which CDHR2 overexpression inhibits breast cancer cell growth and cell cycle pragression via the PI3K/Akt signaling pathway. METHODS: Bioinformatic analysis was performed to investigate CDHR2 expression in breast cancer and its correlation with survival outcomes of the patients. Immunohistochemistry was used to examine CDHR2 expressions in surgical specimens of tumor and adjacent tissues from 10 patients with breast cancer. CDHR2 expression levels were also detected in 5 breast cancer cell lines and a normal human mammary epithelial cell line using qRT-PCR and Western blotting. Breast cancer cell lines MDA-MB-231 and MCF7 with low CDHR2 expression were transfected with a CDHR2-overexpressing plasmid, and the changes in cell proliferation and cell cycle were evaluated using CCK-8 assay, EdU assay, and cell cycle assay; the changes in expressions of PI3K/Akt signaling pathway and cell cycle pathway proteins were detected with Western blotting. RESULTS: Bioinformatic analysis showed low CDHR2 expression level in both breast cancer and adjacent tissues without significant difference between them (P > 0.05), but breast cancer patients with a high expression of CDHR2 had a more favorable prognosis. Immunohistochemistry, qRT-PCR and Western blotting showed that the expression of CDHR2 was significantly down-regulated in breast cancer tissues and breast cancer cells (P < 0.01), and its overexpression strongly inhibited cell proliferation, caused cell cycle arrest, and significantly inhibited PI3K and Akt phosphorylation and the expression of cyclin D1. CONCLUSION: Overexpression of CDHR2 inhibits proliferation and causes cell cycle arrest in breast cancer cells possibly by inhibiting the PI3K/Akt signaling pathway.


Subject(s)
Breast Neoplasms , Cell Proliferation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Cycle , MCF-7 Cells
9.
J Cancer Res Clin Oncol ; 150(7): 335, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969831

ABSTRACT

BACKGROUND: Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS: The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS: UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION: We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.


Subject(s)
Autophagy-Related Proteins , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Mice , Female , Male , Prognosis , Cell Line, Tumor , Mice, Nude , Cell Movement , Gene Expression Regulation, Neoplastic , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins , Nuclear Proteins
10.
J Orthop Surg Res ; 19(1): 393, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970109

ABSTRACT

BACKGROUND: To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS: We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS: Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION: Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.


Subject(s)
Cistanche , Hyperlipidemias , Osteoporosis , Ovariectomy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Ovariectomy/adverse effects , Female , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Phosphatidylinositol 3-Kinases/metabolism , Hyperlipidemias/complications , Hyperlipidemias/metabolism , Osteoporosis/etiology , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Bone Density/drug effects , Random Allocation
11.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109976, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38987002

ABSTRACT

The effects and underlying mechanisms of metformin which can improve glucose homeostasis of fish have rarely been explored. This experiment aimed to explore the influence of metformin on growth performance, body composition, liver health, hepatic glucolipid metabolic capacity and IR/PI3K/AKT pathway in grass carp (Ctenopharyngodon idella) fed high-carbohydrate diets. A normal diet (Control) and high carbohydrate diets with metformin supplementation (0.00 %, 0.20 %, 0.40 %, 0.60 % and 0.80 %) were configured. Six groups of healthy fish were fed with the experimental diet for eight weeks. The results showed that the growth performance of grass carp was impaired in high carbohydrate diet. Impairment of IR/PI3K/AKT signalling pathway reduced insulin sensitivity, while hepatic oxidative stress damage and decreased immunity affected liver metabolic function. The glycolysis and lipolysis decrease while the gluconeogenesis and fat synthesis increase, which triggers hyperglycaemia and lipid deposition in the body. Metformin supplementation restored the growth performance of grass carp. Metformin improved IR/PI3K/AKT pathway signalling and alleviated insulin resistance, while liver antioxidant capacity and immunity were enhanced resulting in the restoration of liver health. The elevation of glycolysis and lipolysis maintains glycaemic homeostasis and reduces lipid deposition, respectively. These results suggest that metformin supplementation restores liver health and activates the IR/PI3K/AKT signalling pathway, ameliorating insulin resistance and glucose-lipid metabolism disorders caused by a high-carbohydrate diet. As judged by HOMA-IR, the optimum supplementation level of metformin in grass carp (C. idella) fed a high-carbohydrate diet is 0.67 %.

13.
Int J Nanomedicine ; 19: 6811-6828, 2024.
Article in English | MEDLINE | ID: mdl-39005959

ABSTRACT

Purpose: Angiogenesis is a tightly controlled process that initiates the formation of new vessels and its dysfunction can lead to life-threatening diseases. Apoptotic extracellular vesicles (ApoEVs) have emerged as a proangiogenic agent with high safety and isolation efficiency profile, and ApoEVs from supernumerary tooth-derived pulp stem cells (SNTSC-ApoEVs) have their unique advantages with an easily accessible parental cell source and non-invasive cell harvesting. However, the detailed characteristics of SNTSC-ApoEVs are largely unknown. This study aimed to investigate the proangiogenic capacity and function molecule of SNTSC-ApoEVs. Methods: SNTSC-ApoEVs were isolated and characterized. In vitro effects of SNTSC-ApoEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, wound healing, transwell, and tube formation assays. The mRNA and protein levels of proangiogenic genes were quantified by qRT-PCR, Western blot, and immunofluorescence analysis. A Matrigel plug model was established in 6-week-old male nu/nu mice for one week, and the in vivo impact of SNTSC-ApoEVs on micro-vessel formation was assessed by histological analysis. Proteomic analysis and RNA sequencing were performed to explore the active ingredients and underlying mechanisms. Results: SNTSC-ApoEVs enhanced the proliferation, migration, and angiogenesis of HUVECs in vitro. In the Matrigel plug model in vivo, SNTSC-ApoEVs promoted CD31-positive luminal structure formation. Apart from expressing general ApoEV markers, SNTSC-ApoEVs were enriched with multiple proteins related to extracellular matrix-cell interactions. Mechanistically, SNTSC-ApoEVs transferred COL1A1 to HUVECs and promoted endothelial functions by activating the PI3K/Akt/VEGF cascade. Conclusion: SNTSC-ApoEVs can promote angiogenesis by transferring the functional molecule COL1A1 and activating the PI3K/Akt/VEGF pathway, making SNTSC-ApoEVs a promising strategy for the treatment of angiogenesis-related diseases.


Subject(s)
Apoptosis , Collagen Type I , Dental Pulp , Extracellular Vesicles , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Tooth, Supernumerary , Vascular Endothelial Growth Factor A , Extracellular Vesicles/chemistry , Humans , Dental Pulp/cytology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Neovascularization, Physiologic/physiology , Male , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Mice , Collagen Type I/metabolism , Cell Proliferation , Stem Cells/cytology , Stem Cells/metabolism , Signal Transduction , Mice, Nude , Cell Movement , Angiogenesis
14.
Pharmacol Res ; 206: 107300, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992850

ABSTRACT

Depression is a serious global mental disorder. Numerous studies have found that depression may be closely related to decreased neurogenesis, neuroinflammation, neurotransmitter imbalance, and synaptic plasticity dysfunction. The pathogenesis of depression is complex and involves multiple signal transduction pathways and molecular changes. The PI3K/AKT pathway is an essential signaling pathways in neurons, which is widely expressed in emotion-related regions of the brain. Therefore, the PI3K/AKT pathway may play a moderating role in mood disorders. However, the role and mechanism of the PI3K/AKT signaling pathway in depression have not been fully described. This review systematically summarized the role of the PI3K/AKT signaling pathway in the pathogenesis of depression and discussed its potential in the treatment of depression. This will help in the treatment of depression and the development of antidepressants.


Subject(s)
Antidepressive Agents , Depression , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Signal Transduction/drug effects , Animals , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Depression/drug therapy , Depression/metabolism , Phosphatidylinositol 3-Kinases/metabolism
15.
J Ethnopharmacol ; 334: 118590, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029542

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY: To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS: Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS: 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION: Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.

16.
Chem Biol Drug Des ; 104(1): e14589, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031926

ABSTRACT

Previous studies have indicated that heterocyclic substituted dihydropyrazole derivatives, particularly MW-19, potentially exert anticancer activity in vitro; however, the underlying mechanism remains unknown. The present study was designed to investigate the mechanisms underlying MW-19 activity in triple-negative breast cancer cells. A sulforhodamine B assay was performed to evaluate cell proliferation inhibition rates, and the antitumor effect of MW-19 was evaluated in mice with HCC-1806 xenografts. Apoptosis was analyzed by Hoechst 33342 and annexin V/propidium iodide staining. Expression of pro- and antiapoptotic proteins and mRNA were analyzed by western blotting and reverse transcription-quantitative (RT-q) PCR, respectively. We found that MW-19 significantly inhibited HCC-1806 cell proliferation in a dose- and time-dependent manner, and significantly inhibited MDA-MB-231 cell migration. Importantly, oral administration of MW-19 significantly inhibited HCC-1806 tumor growth in BALB/c-nu/nu mice. Moreover, MW-19 treatment induced marked apoptosis and G2/M arrest in the sensitive cell line, HCC-1806. RT-qPCR analysis showed that levels of proapoptotic genes (Bax, caspase-3, caspase-7, and Fas) were considerably increased in the MW-19 group relative to the control group, while those of antiapoptotic factors (Bcl-2, C-MYC) were dramatically decreased. Consistently, Bax, caspase-3, and caspase-7 were significantly induced after MW-19 treatment, while levels of phosphorylated (p-)AKT, p-PI3K, p-ERK, and the antiapoptotic protein, Bcl-2, were clearly diminished, and the P38 MAPK signaling pathway was activated. Furthermore, P38 pharmacological inhibitors abrogated MW-19-induced apoptosis. Together, our findings indicate that MW-19 exerts antitumor effects by targeting PI3K/AKT and ERK/P38 signaling pathways.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Mice, Inbred BALB C , Pyrazoles , Triple Negative Breast Neoplasms , Apoptosis/drug effects , Humans , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Mice, Nude , Cell Movement/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Xenograft Model Antitumor Assays , Phosphatidylinositol 3-Kinases/metabolism
17.
Article in English | MEDLINE | ID: mdl-39037459

ABSTRACT

Atherosclerosis is a leading cause of vascular disease worldwide. Paeonol has been reported to have therapeutical potential in atherosclerosis. The aim of this study is to explore the effect of paeonol on oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells injury and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (100 µg/ml) to mimic atherosclerosis in vitro. The cell viability, proliferation, and apoptosis were assessed by cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry, respectively. The angiogenesis was detected by tube formation assay. The levels of inflammatory factor were measured by enzyme-linked immunosorbent assay (ELISA). In addition, the levels of Fe2+, reactive oxygen species (ROS), and glutathione (GSH) were detected to assess ferroptosis. The western blot was used to detect the protein expression. Ox-LDL inhibited cell viability, proliferation, and angiogenesis, but induced apoptosis and inflammation in HUVECs, and paeonol (75 µM) relieves ox-LDL-induced HUVEC injury. Also, paeonol inhibited ox-LDL-induced ferroptosis of HUVECs. Interestingly, heme oxygenase-1 (HMOX1) knockdown alleviated ox-LDL-induced HUVECs injury and ferroptosis. Paeonol affected ox-LDL-induced HUVECs via regulating HMOX1. In addition, paeonol regulated PI3K/AKT pathway via HMOX1, and the inhibitor of phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway reversed the effects of HMOX1 knockdown on ox-LDL-induced HUVECs. Paeonol alleviated ox-LDL-induced HUVEC injury by regulating the PI3K/AKT pathway via targeting HMOX1.

18.
J Cell Mol Med ; 28(14): e18556, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039706

ABSTRACT

Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.


Subject(s)
Carcinogenesis , Cell Proliferation , DNA Methylation , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SOXC Transcription Factors , Humans , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Signal Transduction , Male , Female , Animals , Up-Regulation/genetics , Promoter Regions, Genetic , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Movement/genetics , Middle Aged , Mice , Prognosis , Apoptosis/genetics
19.
Article in English | MEDLINE | ID: mdl-38894621

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.

20.
Cancers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893174

ABSTRACT

BACKGROUND: Metformin is a first-line therapy for type 2 diabetes as it disrupts cellular metabolism. Despite the association between metformin and lower cancer incidence, the anti-tumour activity of the drug in colorectal cancer (CRC) is incompletely understood. This study identifies underlying molecular mechanisms by which metformin slows colorectal cancer cell proliferation by investigating metformin-associated microRNA (miRNA) and target gene pairs implicated in signalling pathways. METHODS: The present study analysed changes in miRNAs and the coding transcriptome in CRC cells treated with a sublethal dose of metformin, followed by the contextual validation of potential miRNA-target gene pairs. RESULTS: Analyses of small RNA and transcriptome sequencing data revealed 104 miRNAs and 1221 mRNAs to be differentially expressed in CRC cells treated with metformin for 72 h. Interaction networks between differentially expressed miRNAs and putative target mRNAs were identified. Differentially expressed genes were mainly implicated in metabolism and signalling processes, such as the PI3K-Akt and MAPK/ERK pathways. Further validation of potential miRNA-target mRNA pairs revealed that metformin induced miR-2110 and miR-132-3p to target PIK3R3 and, consequently, regulate CRC cell proliferation, cell cycle progression and the PI3K-Akt signalling pathway. Metformin also induced miR-222-3p and miR-589-3p, which directly target STMN1 to inhibit CRC cell proliferation and cell cycle progression. CONCLUSIONS: This study identified novel changes in the coding transcriptome and small non-coding RNAs associated with metformin treatment of CRC cells. Integration of these datasets highlighted underlying mechanisms by which metformin impedes cell proliferation in CRC. Importantly, it identified the post-transcriptional regulation of specific genes that impact both metabolism and cell proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL
...