Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.966
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000397

ABSTRACT

Prostate adenocarcinoma (PRAD) is the second most common tumor associated with death. The role and mechanisms of the fragile X mental retardation 1 (FMR1) gene in PRAD remain unknown. We conducted an analysis of FMR1 expression in PRAD to determine its prognostic importance and connection to carcinogenic pathways such as PI3K_AKT_mTOR. Survival analyses were utilized to establish a correlation between FMR1 expression and patient outcomes. We used the integration of genomic data with bioinformatic predictions to predict the regulatory factors of the FMR1 gene in PRAD. Our data revealed that individuals with higher levels of FMR1 expression experience worse survival outcomes compared to those with lower expression (hazard ratio [HR] = 5.08, 95% confidence interval [CI] = 1.07 - 24, p = 0.0412). FMR1 expression was significantly higher in patients with advanced pathological tumor stages, particularly in the pT3 and pT4 combined stages and the pN1 nodal stage. Furthermore, patients with high Gleason scores (GSs) (combined GSs 8 and 9) exhibited increased levels of FMR1 expression. Our results further identify a possible regulatory link between FMR1 and key oncogenic pathways, including PI3K_AKT_mTOR, and predict the possible mechanism by which FMR1 is regulated in PRAD. Our data suggest that the FMR1 gene could serve as a biomarker for PRAD progression. However, in-depth investigations, including those with large patient samples and in vitro studies, are needed to validate this finding and understand the mechanisms involved.


Subject(s)
Adenocarcinoma , Fragile X Mental Retardation Protein , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/mortality , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Aged , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
2.
Oncol Res ; 32(7): 1209-1219, 2024.
Article in English | MEDLINE | ID: mdl-38948021

ABSTRACT

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Subject(s)
Cell Movement , Drug Resistance, Neoplasm , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Doxorubicin/pharmacology
3.
J Cell Mol Med ; 28(13): e18386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990057

ABSTRACT

Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.


Subject(s)
Acute Lung Injury , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , NF-E2-Related Factor 2 , Naphthoquinones , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , NF-E2-Related Factor 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Naphthoquinones/pharmacology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Cytokines/metabolism , Heme Oxygenase-1/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Membrane Proteins/metabolism
4.
J Clin Transl Hepatol ; 12(7): 625-633, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38993511

ABSTRACT

Background and Aims: The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods: Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results: Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions: Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.

5.
Heliyon ; 10(12): e33161, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39005924

ABSTRACT

Poultry necrotic enteritis is an important enteric disease which might be controlled by antibiotics. However, with the excessive use of antibiotics, the phenomenon of drug resistance of Clostridium perfringens is becoming increasingly prominent. Anemoside B4 exhibits important anti-inflammatory, antioxidant and immunomodulatory effects. This study was performed to estimate the effect of Anemoside B4 on chicken necrotic enteritis induced by C. perfringens in vivo and in vitro. In the in vivo experiment we investigated the efficacy of Anemoside B4 on the growth curve, biofilm formation, haemolytic activity, virulence-related gene expression and NF-κB and PI3K/AKT/mTOR activation in Caco-2 cells induced by C. perfringens. The results showed that 12.5-50 µg/mL Anemoside B4 had no antibacterial activity but could inhibit biofilm formation, attenuate haemolytic activity and virulence-related gene expression of C. perfringens and weaken NF-κB and PI3K/Akt/mTOR activation triggered by C. perfringens in Caco-2 cells. In the in vivo experiment, 60 17-day-old healthy White Leghorns were randomly divided into six groups. The growing laying hens of the control group were fed a basic diet, and those of the five challenged groups were fed a basic diet (infection group), added 0.43 g/kg Anemoside B4 (0.43 g/kg Ane group), 0.86 g/kg Anemoside B4 (0.86 g/kg Ane group), 1.72 g/kg Anemoside B4 (1.72 g/kg Ane group) and 40 mg/kg lincomycin (lincomycin group), respectively. All challenged laying hens were infected with 1 × 109 CFU C. perfringens from day 17-20. Blood and intestinal samples were obtained, and the data demonstrated that Anemoside B4 improved the blood biochemical parameters, attenuated jejunum tissue injury, increased the spleen, thymus, bursa of fabricius index, and decreased lesion scores of the jejunum and the ileum. In the jejunum, Anemoside B4 and lincomycin downregulated the expression of IL-1ß, IL-6, IL-10, TNF-α and IFN-γ at mRNA levels. Moreover, Anemoside B4 significantly enhanced both mRNA and protein levels of tight junctions ZO-1, Claudin-1 and MUC-2 in the jejunum. Anemoside B4 weakened p-P65, p-PI3K, p-Akt and p-mTOR protein expression in the jejunum infected by C. perfringens. Diets supplemented with Anemoside B4 alleviated C. perfringens-induced necrotic enteritis in laying hens by inhibiting NF-κB and PI3K/Akt/mTOR signalling pathways and improving intestinal barrier functions.

6.
Am J Transl Res ; 16(6): 2190-2211, 2024.
Article in English | MEDLINE | ID: mdl-39006282

ABSTRACT

OBJECTIVES: To investigate the role of the Wuwei Zishen formula (WWZSF) in treating and preventing perimenopausal syndrome (PMS) and to understand its mechanism. METHODS: Network pharmacology and molecular docking was used to predict active compounds, potential targets, and pathways for PMS treatment using WWZSF. Female Sprague-Dawley (SD) rats were induced with D-galactose (D-gal) to establish a PMS model and treated with Kunbao pill (KBP) and WWZSF. Estrus cycles were observed using vaginal smears. Serum sex hormones were measured using the enzyme-linked immunosorbent assay (ELISA). Histological changes in the uterus and ovaries were evaluated using hematoxylin-eosin staining (HE). Western blot was used to assess the protein expression levels of Cleaved Caspase-3, p62, BAX/Bcl-2, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in the uterus and ovaries. RESULTS: A total of 70 active compounds and 440 potential targets were screened out. Important targets and pathways, including AKT1, Bcl-2, Caspase-3, mTOR, and the PI3K/AKT/mTOR pathways, and molecular docking verified their high affinities to key WWZSF components. In vivo experiments showed that WWZSF can ameliorate the morphological abnormalities of the uterus and ovaries, increase sex hormone levels and organ index, and restore the estrus cycles in PMS rats. Moreover, the western blot results showed decreased Cleaved Caspase-3 and BAX/Bcl-2 protein levels in the ovarian and uterine tissues after WWZSF therapy. Concurrently, there was an increase in the expression of p62 and the ratios of p-AKT/AKT, p-mTOR/mTOR, and p-PI3K/PI3K. CONCLUSION: The PI3K/AKT/mTOR signaling pathway-mediated apoptosis and autophagy pathways may be how WWZSF efficiently reduces PMS.

7.
Article in English | MEDLINE | ID: mdl-38967079

ABSTRACT

BACKGROUND: Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE: This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS: Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS: Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION: Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.

8.
Aging (Albany NY) ; 162024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967628

ABSTRACT

OBJECTIVE: This investigation seeks to elucidate the role of the Granulocyte Colony-Stimulating Factor (G-CSF) in the progression of hepatocellular carcinoma (HCC), as well as the impact of the substance on related signaling pathways within the disease matrix. METHODS: Nude mouse tumor-bearing assay was used to detect tumor progression. Levels of Mannose/CD68 and CD34/Mannose within these samples and the concentrations of Mannose and inducible Nitric Oxide Synthase (iNOS) in macrophages were quantified using immunofluorescence techniques. The angiogenic capability was assessed via tube formation assays, and protein expressions of G-CSF, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-beta (TGF-ß), Matrix Metalloproteinases 2 and 9 (MMP2/9), SH2-containing protein tyrosine phosphatase-2 (SHP-2), phosphorylated PI3K/total PI3K (P-PI3K/t-PI3K), phosphorylated AKT/total AKT (P-AKT/t-AKT), and phosphorylated mTOR/total mTOR (P-mTOR/t-mTOR) were measured through Western Blot analysis in both tumor tissues and macrophages. RESULTS: Administration of G-CSF resulted in a marked augmentation of tumor volume. Macrophage Mannose expression was significantly elevated upon G-CSF treatment, while iNOS levels were conspicuously diminished. G-CSF substantially enhanced the secretion of VEGF, TGF-ß, and MMPs in tumor tissues. Macrophage parameters, following incubation in G-CSF pre-treated conditioned medium, indicated enhanced tube-forming capabilities relative to the control, an effect mitigated by the introduction of specific inhibitors. Furthermore, the G-CSF group exhibited a notable reduction in SHP-2 expression, alongside a substantial elevation in the phosphorylation levels of the PI3K/AKT/mTOR pathway proteins across all tumor-bearing paradigms. CONCLUSION: G-CSF ostensibly facilitates the advancement of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling cascade within Tumor-Associated Macrophages (TAM).

9.
Domest Anim Endocrinol ; 89: 106870, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954983

ABSTRACT

The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.

10.
Adv Sci (Weinh) ; : e2404937, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962935

ABSTRACT

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.

11.
Heliyon ; 10(12): e32525, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988538

ABSTRACT

Objective: To investigate the therapeutic effect of palmar ginseng on cognitive impairment in rats with type 2 diabetes, evaluate its neuroprotective effects, and explore its underlying mechanism. Methods: A rat model of diabetic cognitive impairment (DCI) was established by feeding with homemade high-fat, high-sugar chow combined with intraperitoneal injection of streptozotocin (STZ). Rats were continually fed high-fat, high-sugar chow for 60 days after successful induction of the model. Palmar ginseng was administered via gavage. The Morris test was performed after 30 days of treatment. At the end of the test, blood samples were collected, and the activities of IL-6, IL-10, TNF-α, and IL-1ß in rat serum. Pathological changes in hippocampal tissues were observed by Haematoxylin-eosin (HE) staining of the brain, activation of microglia in hippocampal tissues was detected by immunofluorescence, and the expression of PI3K/Akt/mTOR and JAK2/STAT3 proteins in the hippocampal tissues by Western blot. Results: During the administration of palmar Ginseng, the body weight and blood glucose levels of DCI rats were measured weekly, with results showing that Palmar Ginseng effectively reduced blood glucose levels and body weight of DCI rats. Behavioural tests in the water maze indicated that palmar ginseng effectively improved the learning and memory ability of DCI rats. HE and immunofluorescence staining showed that palmar ginseng improved DCI in rats, ameliorated hippocampal neuronal damage, and improved microglial activation. ELISA showed that palmar ginseng significantly reduced the expression of pro-inflammatory factors in the serum of DCI rats. Increased expression of anti-inflammatory factors was observed, and Western blot analysis showed that Palmar Ginseng regulated PI3K/Akt/mTOR and JAK2/STAT3 protein expression, promoted the phosphorylation of PI3K/Akt/mTOR, and inhibited JAK2/STAT3 protein phosphorylation in rat hippocampal tissues as well as in BV2 cells. Conclusions: Palmar ginseng may improve the onset and development of DCI by upregulating the phosphorylation of proteins in the PI3K/Akt/mTOR pathway.

12.
J Cancer Res Clin Oncol ; 150(7): 342, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980538

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA), characterized by high heterogeneity and extreme malignancy, has a poor prognosis. Doublecortin-like kinase 1 (DCLK1) promotes a variety of malignant cancers in their progression. Targeting DCLK1 or its associated regulatory pathways can prevent the generation and deterioration of several malignancies. However, the role of DCLK1 in CCA progression and its molecular mechanisms remain unknown. Therefore, we aimed to investigate whether and how DCLK1 contributes to CCA progression. METHODS: The expression of DCLK1 in CCA patients was detected using Immunohistochemistry (IHC). We established DCLK1 knockout and DCLK1 overexpression cell lines for Colony Formation Assay and Transwell experiments to explore the tumor-promoting role of DCLK1. RT-PCR, Western blot and multiple fluorescent staining were used to assess the association between DCLK1 and epithelial-mesenchymal transition (EMT) markers. RNA sequencing and bioinformatics analysis were performed to identify the underlying mechanisms by which DCLK1 regulates CCA progression and the EMT program. RESULTS: DCLK1 was overexpressed in CCA tissues and was associated with poor prognosis. DCLK1 overexpression facilitated CCA cell invasion, migration, and proliferation, whereas DCLK1 knockdown reversed the malignant tendencies of CCA cells, which had been confirmed both in vivo and in vitro. Furthermore, we demonstrated that DCLK1 was substantially linked to the advancement of the EMT program, which included the overexpression of mesenchymal markers and the downregulation of epithelial markers. For the underlying mechanism, we proposed that the PI3K/AKT/mTOR pathway is the key process for the role of DCLK1 in tumor progression and the occurrence of the EMT program. When administered with LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, the tumor's ability to proliferate, migrate, and invade was greatly suppressed, and the EMT process was generally reversed. CONCLUSIONS: DCLK1 facilitates the malignant biological behavior of CCA cells through the PI3K/AKT/mTOR pathway. In individuals with cholangiocarcinoma who express DCLK1 at high levels, inhibitors of the PI3K/AKT/mTOR signaling pathway may be an effective therapeutic approach.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/drug therapy , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Male , Animals , Female , Mice , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Prognosis , Middle Aged , Cell Proliferation , Mice, Nude , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic
13.
Inflammation ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980500

ABSTRACT

Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-ß1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.

14.
Tissue Cell ; 89: 102455, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38964084

ABSTRACT

Breast cancer (BC) is the most common type of fatal cancer in women. New therapeutic strategies need to be explored to enhance the efficacy of doxorubicin by overcoming the resistance of BC cells. NUF2 is a component of the Ndc80 centromere complex and is a key substance in mediating mitosis and affects the progression of multiple tumors. However, the role as well as mechanisms of NUF2 resistance in BC remain unclear. This study aims to reveal the role of NUF2 in drug resistance in BC. We here revealed that NUF2 was highly expressed in human BC. NUF2 depletion-derived exosomes blocked the growth of BC cells. Further, NUF2 ablation-derived exosomes inhibited autophagy in BC cells. Also, NUF2 ablation-derived exosomes improved doxorubicin resistance in BC cells. Mechanically, NUF2 ablation-derived exosomes blocked PI3K/AKT/mTOR axis in BC cells. In summary, NUF2 ablation-derived exosomes blocked the autophagy of BC cells and improved doxorubicin resistance via mediating PI3K/AKT/mTOR axis.

15.
PeerJ ; 12: e17555, 2024.
Article in English | MEDLINE | ID: mdl-38948215

ABSTRACT

Background: PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods: The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results: The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions: The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Disease Progression , Kidney Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Male , Female , Apoptosis , Cell Movement/genetics , Middle Aged , Gene Expression Regulation, Neoplastic , Prognosis , Up-Regulation
16.
Chin Clin Oncol ; 13(3): 34, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38984487

ABSTRACT

BACKGROUND: Breast cancer has become one of the leading causes of cancer deaths and is the most frequently diagnosed cancer among females worldwide. Despite advances in breast cancer therapy, metastatic disease in most patients will eventually progress due to the development of de novo or secondary resistance. Thus, it is extremely important to seek novel drugs with high effectiveness and low toxicity for systematic therapy. METHODS: We applied a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in this study to analyze and evaluate the cytotoxic activity of oleanolic acid (OA) and its derivatives in three types of breast cancer cell lines (MDA-MB-231, MCF-7, and MDA-MB-453). A flow cytometry assay was performed to access the mechanisms of apoptosis and cell cycle analysis in SZC010 in MDA-MB-453 cells. Apoptosis- and cyclin-related proteins were evaluated by western blot. The key proteins of the NF-κB and PI3K-Akt-mTOR signaling pathway were also evaluated by western blot. RESULTS: Our results revealed that all OA derivatives were more effective than OA in three types of breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-453). Among these seven OA derivatives, SZC010 exhibited the most potent cytotoxicity in MDA-MB-453 cells. Additionally, we observed that SZC010 treatment induced dose-and time-dependent growth inhibition in MDA-MB-453 cells. Furthermore, we demonstrated that SZC010 induced growth arrest in the G2/M phase and apoptosis by inhibition of NF-κB activation via the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data indicate that the novel OA derivative, SZC010, has great potential in breast cancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Breast Neoplasms/drug therapy , Female , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/therapeutic use , Cell Proliferation/drug effects , MCF-7 Cells
17.
Exp Brain Res ; 242(8): 1841-1850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38842755

ABSTRACT

Vascular dementia (VaD) is the most common cause of dementia in older adults. Due to the lack of effective treatment options, there is an urgent need to find an effective pharmaceutical compound to combat VaD. Piracetam has been reported to improve impaired cognitive function in a variety of conditions in both human and animal models. However, the role and mechanism of Piracetam in VaD remain unclear. Therefore this study aimed to elucidate the effect of Piracetam on a cellular model of VaD in vitro. We found that Piracetam enhanced the growth of OGD-stimulated SH-SY5Y cells. In addition, Piracetam inhibited the oxidative stress of OGD-stimulated SH-SY5Y cells. Further, Piracetam improved mitochondrial function of OGD-stimulated SH-SY5Y cells. Mechanistically, Piracetam inhibited the PI3K/Akt/mTOR pathway in OGD-stimulated SH-SY5Y cells. Collectively, Piracetam improved oxidative stress and mitochondrial dysfunction of OGD-stimulated SH-SY5Y cells through PI3K/Akt/mTOR axis. Hence, Piracetam has the potential to serve as a promising drug of VaD.


Subject(s)
Dementia, Vascular , Mitochondria , Oxidative Stress , Piracetam , Oxidative Stress/drug effects , Oxidative Stress/physiology , Humans , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Piracetam/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Glucose/metabolism , Dose-Response Relationship, Drug
18.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891894

ABSTRACT

Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.


Subject(s)
Signal Transduction , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Humans , Animals , TOR Serine-Threonine Kinases/metabolism
19.
Int J Mol Med ; 54(2)2024 08.
Article in English | MEDLINE | ID: mdl-38940336

ABSTRACT

Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer­associated death in young people. GNE­477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H2O2 stimulus­responsive dodecanoic acid (DA)­phenylborate ester­dextran (DA­B­DEX) polymeric micelle delivery system for GNE­477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE­477 loaded DA­B­DEX (GNE­477@DBD) tumor­targeting drug delivery system was established and the release of GNE­477 was measured. The cellular uptake of GNE­477@DBD by three OS cell lines (MG­63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA­B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H2O2, the DA­B­DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE­477@DBD by cells with sustained release of GNE­477. The in vitro experiments, including MTT assay, flow cytometry, western blotting and RT­qPCR, demonstrated that GNE­477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. In vivo, through the observation of mice tumor growth and the results of H&E staining, the GNE­477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H2O2­responsive DA­B­DEX presents a promising delivery system for hydrophobic anti­tumor drugs for OS therapy.


Subject(s)
Dextrans , Hydrogen Peroxide , Lauric Acids , Micelles , Osteosarcoma , Animals , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Cell Line, Tumor , Dextrans/chemistry , Mice , Lauric Acids/chemistry , Lauric Acids/pharmacology , Apoptosis/drug effects , Polymers/chemistry , Polymers/pharmacology , Xenograft Model Antitumor Assays , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Male , TOR Serine-Threonine Kinases/metabolism
20.
J Mol Histol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869753

ABSTRACT

BACKGROUND: Sorting nexin 14 (SNX14) is a member of the sorting junction protein family. Its specific roles in cancer development remain unclear. Therefore, in this study, we aimed to determine the effects and underlying mechanisms of SNX14 on autophagy of breast cancer cells to aid in the therapeutic treatment of breast cancer. METHODS: In this study, we performed in vitro experiments to determine the effect of SNX14 on breast cancer cell growth. Moreover, we used an MCF7 breast cancer tumor-bearing mouse model to confirm the effect of SNX14 on tumor cell growth in vivo. We also performed western blotting and quantitative polymerase chain reaction to identify the mechanism by which SNX14 affects breast cancer MCF7 cells. RESULTS: We found that SNX14 regulated the onset and progression of breast cancer by promoting the proliferation and inhibiting the autophagy of MCF7 breast cancer cells. In vivo experiments further confirmed that SNX14 knockdown inhibited the tumorigenicity and inhibited the growth of tumor cells in tumor tissues of nude mice. In addition, western blotting analysis revealed that SNX14 modulate the autophagy of MCF7 breast cancer cells via the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase signaling pathway. CONCLUSION: Our findings indicate that SNX14 is an essential tumor-promoting factor in the development of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...