Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Int J Biol Macromol ; 276(Pt 2): 133882, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019373

ABSTRACT

PIM-1 kinase belongs to the Ser/Thr kinases family, an attractive therapeutic target for prostate cancer. Here, we screened about 100 natural substances to find potential PIM-1 inhibitors. Two natural compounds, Naringenin and Quercetin, were finally selected based on their PIM-1 inhibitory potential and binding affinities. The docking score of Naringenin and Quercetin with PIM-1 is -8.4 and - 8.1 kcal/mol, respectively. Fluorescence binding studies revealed a strong affinity (Ka values, 3.1 × 104 M-1 and 4.6 × 107 M-1 for Naringenin and Quercetin, respectively) with excellent IC50 values for Naringenin and Quercetin (28.6 µM and 34.9 µM, respectively). Both compounds inhibited the growth of prostate cancer cells (LNCaP) in a dose-dependent manner, with the IC50 value of Naringenin at 17.5 µM and Quercetin at 8.88 µM. To obtain deeper insights into the PIM-1 inhibitory effect of Naringenin and Quercetin, we performed extensive molecular dynamics simulation studies, which provided insights into the binding mechanisms of PIM-1 inhibitors. Finally, Naringenin and Quercetin were suggested to serve as potent PIM-1 inhibitors, offering targeted treatments of prostate cancer. In addition, our findings may help to design novel Naringenin and Quercetin derivatives that could be effective in therapeutic targeting of prostate cancer.

2.
Acta Pharm Sin B ; 14(7): 3049-3067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027246

ABSTRACT

The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.

3.
Article in English | MEDLINE | ID: mdl-38874684

ABSTRACT

PURPOSE: Breast cancer is the most frequent cancer in women with significant death rate. Morbidity is associated with drug resistance and metastasis. Development of novel drugs is unmet need. The aim of this study is to show potent anti-neoplastic activity of the UM171 compound on breast cancer cells and its mechanism of action. METHODS: The inhibitory effect of UM171 on several breast cancer (BC) cell lines was examined using MTT and colony-forming assays. Cell cycle and apoptosis assays were utilized to determine the effect of UM171 on BC cell proliferation and survival. Wound healing scratch and transwell migration assays were used to examine the migration of BC cell lines in culture. Xenograft of mouse model with 4T1 cells was used to determine inhibitory effect of UM171 in vivo. Q-RT-PCR and western blotting were used to determine the expression level of genes effected by UM171. Lentivirus-mediated shRNAs were used to knockdown the expression of KLF2 in BC cells. RESULTS: UM171 was previously identified as a potent agonist of human hematopoietic stem cell renewal and inhibitor of leukemia. In this study, UM171 was shown to inhibit the growth of multiple breast cancer cell lines in culture. UM171-mediated growth inhibition was associated with the induction of apoptosis, G2/M cell cycle arrest, lower colony-forming capacity, and reduced motility. In a xenotransplantation model of mouse triple-negative breast cancer 4T1 cells injected into syngeneic BALB/c mice, UM171 strongly inhibited tumor growth at a level comparable to control paclitaxel. UM171 increased the expression of the three PIM genes (PIM1-3) in breast cancer cells. Moreover, UM171 strongly induced the expression of the tumor suppressor gene KLF2 and cell cycle inhibitor P21CIP1. Accordingly, knockdown of KLF2 using lentivirus-mediated shRNA significantly attenuated the growth suppressor activity of UM171. As PIM1-3 act as oncogenes and are involved in breast cancer progression, induction of these kinases likely impedes the inhibitory effect of KLF2 induction by UM171. Accordingly, combination of UM171 with a PAN-PIM inhibitor LGH447 significantly reduced tumor growth in culture. CONCLUSION: These results suggested that UM171 inhibited breast cancer progression in part through activation of KLF2 and P21. Combination of UM171 with a PAN-PIM inhibitor offer a novel therapy for aggressive forms of breast cancer.

4.
Cancer Med ; 13(13): e7445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940430

ABSTRACT

INTRODUCTION: Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS: To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS: NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION: We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.


Subject(s)
Cell Transformation, Neoplastic , Nuclear Pore Complex Proteins , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-pim-1 , Animals , Humans , Mice , Apoptosis , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Jurkat Cells , NIH 3T3 Cells , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
5.
Small ; : e2401592, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805745

ABSTRACT

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

6.
Mol Neurobiol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816674

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aß and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aß42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aß-mediated increase in mTOR activity, indicating that the accumulation of Aß may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aß-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.

7.
Article in English | MEDLINE | ID: mdl-38716217

ABSTRACT

Background: Serine/threonine kinase 1 (PIM1) plays a crucial role in cell growth, differentiation, and apoptosis. However, its role in the pathogenesis of concanavalin A (ConA)-induced acute hepatitis is not well understood. PIM1 kinase inhibitor can reduce the expression of PIM1. This study aims to investigate the effects of PIM1 kinase inhibitor and its protective mechanism in ConA-induced acute hepatitis. Methods: C57/BL six mice were injected with ConA (20, 15, and 12 mg/kg) to induce acute hepatitis, and PIM1 kinase inhibitor SMI-4a (60 mg/kg) was administered orally 24 h before ConA injection. The survival rate of the mice was observed after ConA injection. The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Serum inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was performed on liver tissue collected at different time points. The major cytokines expression in liver tissue was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The number of macrophages, T-cell and neutrophils in liver tissue were detected by flow cytometry (FCM). PIM1 in liver tissue was detected by western blot (WB) and qRT-PCR. SMI-4a (80 µM) was pretreated for 24 h and ConA (400 µg/mL) was stimulated for 12 h in RAW264.7 cell model. Phosphorylated p65 (p-p65) and cleaved caspase-3 (c-caspase-3) in liver tissue and macrophages were detected by WB. Results: Different concentrations of ConA caused different acute hepatitis mortality, 12 mg/kg concentration within 24 h of the mortality showed a gradient increase. The levels of AST and ALT increased significantly at 12 h after ConA injection. PIM1 expression was upregulated at 12 h. SMI-4a can suppress the PIM1 expression. SMI-4a suppressed cytokines production, AST, and ALT in ConA-treated serum. SMI-4a suppressed the major cytokines in liver tissue. Tests in liver tissue showed that SMI-4a reduced the number of T cells, neutrophils, and macrophages. SMI-4a inhibited the inflammatory response by downregulating the expression of p-p65. Meanwhile, apoptosis was decreased by decreasing the expression of c-caspase-3. Conclusions: In conclusion, the protective effect of SMI-4a against acute hepatitis is by reducing the inflammatory response and apoptosis. These findings suggest that SMI-4a may have therapeutic potential in the treatment of autoimmune hepatitis.

8.
Life Sci ; 349: 122714, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735366

ABSTRACT

AIMS: Non-alcoholic fatty liver disease (NAFLD) has risen as a significant global public health issue, for which vertical sleeve gastrectomy (VSG) has become an effective treatment method. The study sought to elucidate the processes through which PIM1 mitigates the advancement of NAFLD. The Pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) functions as a serine/threonine kinase. Bioinformatics analysis revealed that reduced PIM1 expression in NAFLD. METHODS: To further prove the role of PIM1 in NAFLD, an in-depth in vivo experiment was performed, in which male C57BL/6 mice were randomly grouped to receive a normal or high-fat diet for 24 weeks. They were operated or delivered the loaded adeno-associated virus which the PIM1 was overexpressed (AAV-PIM1). In an in vitro experiment, AML12 cells were treated with palmitic acid to induce hepatic steatosis. KEY FINDINGS: The results revealed that the VSG surgery and virus delivery of mice alleviated oxidative stress, and apoptosis in vivo. For AML12 cells, the levels of oxidative stress, apoptosis, and lipid metabolism were reduced via PIM1 upregulation. Moreover, ML385 treatment resulted in the downregulation of the NRF2/HO-1/NQO1 signaling cascade, indicating that PIM1 mitigates NAFLD by targeting this pathway. SIGNIFICANCE: PIM1 alleviated mice liver oxidative stress and NAFLD induced by high-fat diet by regulating the NRF2/HO-1/NQO1 signaling Pathway.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2 , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Proto-Oncogene Proteins c-pim-1 , Animals , Proto-Oncogene Proteins c-pim-1/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Male , Mice , NF-E2-Related Factor 2/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Heme Oxygenase-1/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/pathology , Signal Transduction , Apoptosis , Membrane Proteins/metabolism , Membrane Proteins/genetics
9.
Arch Pharm (Weinheim) ; 357(6): e2400094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631036

ABSTRACT

Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Stilbenes , Humans , Binding Sites , Crystallography, X-Ray , Drug Design , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/chemical synthesis , Structure-Activity Relationship
10.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684986

ABSTRACT

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Autoimmune Diseases , Dimethyl Fumarate , Immunosuppressive Agents , Retina , Uveitis , Dimethyl Fumarate/administration & dosage , Dimethyl Fumarate/pharmacology , Uveitis/genetics , Uveitis/immunology , Uveitis/therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Single-Cell Gene Expression Analysis , Disease Models, Animal , Animals , Mice , Female , Mice, Inbred C57BL , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Transcription, Genetic , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Atlases as Topic , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Retina/drug effects , Retina/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology
11.
Mol Divers ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642309

ABSTRACT

One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.

12.
Article in English | MEDLINE | ID: mdl-38573002

ABSTRACT

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

13.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645153

ABSTRACT

Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results: We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions: Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.

14.
Neoplasia ; 52: 100996, 2024 06.
Article in English | MEDLINE | ID: mdl-38593698

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, and its incidence has increased rapidly in recent years. The BRAF inhibitor vemurafenib is effective against BRAFV600E-positive PTC; however, acquired resistance to single agent therapy frequently leads to tumor recurrence and metastasis, underscoring the need to develop tailored treatment strategies. We previously showed that the oncogenic kinase PIM1 was associated with the malignant phenotype and prognosis of PTC. In this study, we showed that sustained expression of the PIM1 protein in PTC was affected by the BRAFV600E mutation. Based on this regulatory mechanism, we tested the synergistic effects of inhibitors of BRAF (BRAFi) and PIM1 in BRAFV600E-positive PTC cell lines and xenograft tumors. LC-MS metabolomics analyses suggested that BRAFi/PIMi therapy acted by restricting the amounts of critical amino acids and nucleotides required by cancer cells as well as modulating DNA methylation. This study elucidates the role of BRAFV600E in the regulation of PIM1 in PTC and demonstrates the synergistic effect of a novel combination, BRAFi/PIMi, for the treatment of PTC. This discovery, along with the pathways that may be involved in the powerful efficacy of BRAFi/PIMi strategy from the perspective of cell metabolism, provides insight into the molecular basis of PTC progression and offers new perspectives for BRAF-resistant PTC treatment.


Subject(s)
Drug Synergism , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins c-pim-1 , Thyroid Cancer, Papillary , Thyroid Neoplasms , Animals , Humans , Mice , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Xenograft Model Antitumor Assays
15.
Cell Rep ; 43(4): 114018, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551959

ABSTRACT

Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.


Subject(s)
Mitochondria , Mitochondrial Proteins , Protein Aggregates , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Stress, Physiological , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Proteostasis , Proteome/metabolism , Proteotoxic Stress
16.
Ann Hematol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424303

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common and aggressive type of B-cell lymphoma. Unfortunately, about one-third of patients either relapse after the initial treatment or are refractory to first-line therapy, indicating a need for new treatment modalities. PIM serine/threonine kinases are proteins that are associated with genetic mutations, overexpression, or translocation events in B-cell lymphomas. We conducted an integrative analysis of whole-exome sequencing in 52 DLBCL patients, and no amplification, mutation, or translocation of the PIM1 gene was detected. Instead, analyses of TCGA and GTEx databases identified that PIM1 expression was increased in DLBCL samples compared to normal tissue, and high expression levels were associated with poor overall survival. Moreover, interference of PIM1 significantly suppressed DLBCL cell proliferation. In addition, we identified anwulignan, a natural small-molecule compound, as a PIM1 inhibitor. Anwulignan directly binds to PIM1 and exerts antitumor effects on DLBCL in vitro and in vivo by inducing apoptosis, cell cycle arrest, and autophagic cell death. Furthermore, we identified an effective synergistic combination between anwulignan and chidamide. Our findings suggested that PIM1 could be a therapeutic target and prognostic factor for DLBCL, and anwulignan holds promise for future development as a natural product for treatment.

17.
J Enzyme Inhib Med Chem ; 39(1): 2304044, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38230430

ABSTRACT

New aromatic O-alkyl pyridine derivatives were designed and synthesised as Proviral Integration Moloney (PIM)-1 kinase inhibitors. 4c and 4f showed potent in vitro anticancer activity against NFS-60, HepG-2, PC-3, and Caco-2 cell lines and low toxicity against normal human lung fibroblast Wi-38 cell line. Moreover, 4c and 4f induced apoptosis in the four tested cancer cell lines with high percentage. In addition, 4c and 4f significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 4c and 4f showed potent PIM-1 kinase inhibitory activity with IC50 = 0.110, 0.095 µM, respectively. Kinetic studies indicated that 4c and 4f were both competitive and non-competitive inhibitors for PIM-1 kinase enzyme. In addition, in silico prediction of physiochemical properties, pharmacokinetic profile, ligand efficiency, ligand lipophilic efficiency, and induced fit docking studies were consistent with the biological and kinetic studies, and predicted that 4c and 4f could act as PIM-1 kinase competitive non-adenosine triphosphate (ATP) mimetics with drug like properties.


Subject(s)
Antineoplastic Agents , Pyridones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Caspases/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/chemistry , Caco-2 Cells , Kinetics , Ligands , Apoptosis , Cell Proliferation , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Structure-Activity Relationship
18.
Int J Gen Med ; 17: 205-224, 2024.
Article in English | MEDLINE | ID: mdl-38268862

ABSTRACT

Purpose: Osteoarthritis (OA) is a joint disease with a long and slow course, which is one of the major causes of disability in middle and old-aged people. This study was dedicated to excavating the cellular senescence-associated biomarkers of OA. Methods: The Gene Expression Omnibus (GEO) database was searched and five datasets pertaining to OA were obtained. After removing the batch effect, the GSE55235, GSE55457, GSE82107, and GSE12021 datasets were integrated together for screening of the candidate genes by differential analysis and weighted gene co-expression network analysis (WGCNA). Next, those genes were further filtered by machine learning algorithms to obtain cellular senescence-associated biomarkers of OA. Subsequently, enrichment analyses based on those biomarkers were conducted, and we profiled the infiltration levels of 22 types immune cells with the ERSORT algorithm. A lncRNA-miRNA-mRNA regulatory and drug-gene network were constructed. Finally, we validated the senescence-associated biomarkers at both in vivo and in vitro levels. Results: Five genes (BCL6, MCL1, SLC16A7, PIM1, and EPHA3) were authenticated as cellular senescence-associated biomarkers in OA. ROC curves demonstrated the reliable capacity of the five genes as a whole to discriminate OA samples from normal samples. The nomogram diagnostic model based on 5 genes proved to be a reliable predictor of OA. Single-gene GSEA results pointed to the involvement of the five biomarkers in immune-related pathways and oxidative phosphorylation in the development of OA. Immune infiltration analysis manifested that the five genes were significantly correlated with differential immune cells. Subsequently, a lncRNA-miRNA-mRNA network and gene-drug network containing were generated based on five cellular senescence-associated biomarkers in OA. Conclusion: A foundation for understanding the pathophysiology of OA and new insights into OA diagnosis and treatment were provided by the identification of five genes, namely BCL6, MCL1, SLC16A7, PIM1, and EPHA3, as biomarkers associated with cellular senescence in OA.

19.
Brain Res ; 1828: 148790, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38272156

ABSTRACT

A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plasmalogens , NFI Transcription Factors/metabolism , Inflammasomes/metabolism , STAT3 Transcription Factor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Vascular Remodeling
20.
J Biomol Struct Dyn ; 42(5): 2392-2409, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37160699

ABSTRACT

Cancer is an unimpeded growth of cells leading to metathesis of cancer and eventually spread throughout the body. PIM kinases are the members of the serine threonine kinase playing role in cancer progression, differentiation and proliferation. Till date there is no single drug targeting PIM-1 kinase in the market, that has made itself a target in limelight for the discover of new anticancer agents. The contemporary research focusses on the development of new inhibitors of PIM-1 kinase by application of ligand-based and structure-based perspective of drug discovery namely 3D-QSAR, molecular docking and dynamics. The following study stated the correlation amid structural and biological activity of the compounds employing 3D-QSAR analysis. Three 3D-QSAR models were generated using 33 molecules from which the excellent model stated an encouraging conventional correlation coefficient (r2) 0.8651, cross validation coefficient (q2) 0.7609. Furthermore, the predicted correlation coefficient (r2 pred) 0.6274, respectively. Molecular docking studies revealed that the most active compound 26 resided in the active pocket of PIM-1 kinase establishing hydrogen bond interactions with Asp186 in the DFG motif; similarly, all other molecules were engaged within the active site of the PIM-1 kinase. Moreover, molecular dynamics simulation study stated the stability of the ligand in the active site of PIM-1 kinase protein by developing two hydrogen bonds throughout the trajectory of 100 ns. In nutshell, the output stated the successful application of ligand and structure-based strategy for the development of novel PIM-1 kinase inhibitors as anticancer agents.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Dynamics Simulation , Molecular Docking Simulation , Proto-Oncogene Proteins c-pim-1 , Quantitative Structure-Activity Relationship , Ligands , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...