Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.850
Filter
1.
Food Chem ; 460(Pt 2): 140616, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094340

ABSTRACT

Drynaria rhizome (DR) is used as a natural remedy to ameliorate obesity (OB) in East Asia; in parallel, the gut microbiota (GM) might exert a positive impact on OB through their metabolites. This study elucidates the orchestrated effects of DR and GM on OB. DR-GM, - a key signaling pathway-target-metabolite (DGSTM) networks were used to unveil the relationship between DR and GM, and Molecular Docking Test (MDT) and Density Functional Theory (DFT) were adopted to underpin the uppermost molecules. The NR1H3 (target) - 3-Epicycloeucalenol (ligand), and PPARG (target) - Clionasterol (ligand) conjugates from DR, FABP3 (target) - Ursodeoxycholic acid, FABP4 (target) - Lithocholic acid (ligand) or Deoxycholic acid (ligand), PPARA (target) - Equol (ligand), and PPARD (target) - 2,3-Bis(3,4-dihydroxybenzyl)butyrolactone (ligand) conjugates from GM formed the most stable conformers via MDT and DFT. Overall, these findings suggest that DR-GM might be a promising ameliorator on PPAR signaling pathway against OB.

2.
Inflamm Res ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112648

ABSTRACT

BACKGROUND: Acute Kidney Injury (AKI), a prevalent complication of Liver Transplantation (LT) that occurs during the perioperative period has been established to profoundly impact the prognosis of transplant recipients. This study aimed to investigate the mechanism of the hepatic IRI-induced AKI and to identify potential therapeutic targets for treating this condition and improving the prognosis of LT patients. METHODS: An integrated transcriptomics and proteomics approach was employed to investigate transcriptional and proteomic alterations in hepatic IRI-induced AKI and the hypoxia-reoxygenation (H/R) model using TCMK-1 cells and the hepatic IRI-induced AKI mouse model using male C57BL/6 J mice were employed to elucidate the underlying mechanisms. Hematoxylin-eosin staining, reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot were used to assess the effect of Rosiglitazone (RGZ) on hepatic IRI-induced AKI in vitro and in vivo. RESULTS: According to the results, 322 genes and 128 proteins were differentially expressed between the sham and AKI groups. Furthermore, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analyses revealed significant enrichment in pathways related to amino acid and lipid metabolism. Additionally, the Protein-Protein Interaction (PPI) network analysis of the kidney tissues obtained from a hepatic IRI-induced AKI mouse model highlighted arachidonic acid metabolism as the most prominent pathway. Animal and cellular analyses further revealed that RGZ, a PPAR-γ agonist, could inhibit the expression of the PPAR-γ/NF-κB signaling pathway-associated proteins in in vitro and in vivo. CONCLUSIONS: These findings collectively suggest that RGZ ameliorates hepatic IRI-induced AKI via PPAR-γ/NF-κB signaling pathway modulation, highlighting PPAR-γ as a crucial therapeutic target for AKI prevention post-LT.

3.
J Atheroscler Thromb ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098034

ABSTRACT

AIMS: Pemafibrate substantially lowers serum triglyceride (TG) levels and increases high-density lipoprotein cholesterol (HDL-C) levels primarily in Japan, but it has not been evaluated in China. We aimed to confirm the efficacy and safety of pemafibrate in Chinese patients with hypertriglyceridemia and low HDL-C levels by comparing placebo and fenofibrate. METHODS: A multicenter, double-masked trial was conducted in China involving 344 patients with high TG and low HDL-C levels randomly assigned to one of four groups: pemafibrate 0.2 mg/d, pemafibrate 0.4 mg/d, fenofibrate 200 mg/d, or placebo for 12 weeks. The primary endpoint was the percentage change in fasting TG levels. RESULTS: The percentage change in TG levels from baseline was -34.1%, -44.0%, -30.5%, and 6.5% in the pemafibrate 0.2 mg/d, pemafibrate 0.4 mg/d, fenofibrate 200 mg/d, and placebo groups, respectively. Pemafibrate 0.4 mg/d significantly reduced TG levels compared with that in both placebo (p<0.0001) and fenofibrate groups (p=0.0083). Significant improvements in HDL-C, remnant cholesterol, and apolipoprotein A1 levels were also observed with both doses of pemafibrate than with the placebo. Pemafibrate showed significantly smaller changes in alanine aminotransferase, aspartate aminotransferase, and serum creatinine levels than those with fenofibrate. CONCLUSIONS: In Chinese patients, pemafibrate exhibited superior efficacy in improving TG levels and enhanced hepatic and renal safety compared to fenofibrate. Thus, pemafibrate may represent a promising therapeutic option for dyslipidemia in Chinese patients.

4.
J Obes Metab Syndr ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098051

ABSTRACT

Background: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear transcription factor responsible for gene expression, particularly those associated with lipid metabolism. The lipoprotein lipase enzyme (LPL) is considered a key enzyme in lipid metabolism and transport. The link between dyslipidemia and obesity is well understood. Dyslipidemia is also an established risk feature for cardiovascular disease. Thus, it becomes progressively essential to identify the role of genetic factors as risk markers for the development of dyslipidemia among obese males. Methods: A case-control study was performed including 469 males. Anthropometric characteristics and serum lipid profiles such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were evaluated. Genomic DNA extraction and purification were performed using whole blood samples. Restriction enzyme fragment length polymorphism was used to genotype PPARα and LPL single nucleotide polymorphisms. The associations between these polymorphisms and dyslipidemia were examined. Results: The CC and CG genotypes of PPARα gene polymorphisms were significantly associated with higher TC and LDL-C levels (P<0.05). The TT genotype of the LPL gene polymorphism was significantly associated with higher TG levels and lower HDL-C levels (P<0.05). In contrast, the GG genotype may have a protective action against dyslipidemia. Conclusion: The study reaches the interesting conclusion that there was a significant association between PPARα as well as LPL gene polymorphisms and dyslipidemia among obese and non-obese males.

5.
Front Pharmacol ; 15: 1423124, 2024.
Article in English | MEDLINE | ID: mdl-39114353

ABSTRACT

Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.

6.
Diseases ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39195171

ABSTRACT

Diabetic wounds (DWs) are considered chronic complications observed in patients suffering from type 2 diabetes mellitus (DM). Usually, DWs originate from the interplay of inflammation, oxidation, impaired tissue re-epithelialization, vasculopathy, nephropathy, and neuropathy, all of which are related to insulin resistance and sensitivity. The conventional approaches available for the treatment of DWs are mainly confined to the relief of wound pressure, debridement of the wound, and management of infection. In this paper, we speculate that treatment of DWs with 5-aminosalicylic acid (5-ASA) and subsequent activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and transforming growth factor beta (TGF-ß) via the AhR pathway might be highly beneficial for DW patients. This estimation is based on several lines of evidence showing that 5-ASA and PPAR-γ activation are involved in the restoration of insulin sensitivity, re-epithelialization, and microcirculation. Additionally, 5-ASA and TGF-ß activate inflammation and the production of pro-inflammatory mediators. Suitable stabilized formulations of 5-ASA with high absorption rates are indispensable for scrutinizing its probable pharmacological benefits since 5-ASA is known to possess lower solubility profiles because of its reduced permeability through skin tissue. In vitro and in vivo studies with stabilized formulations and a control (placebo) are mandatory to determine whether 5-ASA indeed holds promise for the curative treatment of DWs.

7.
Article in English | MEDLINE | ID: mdl-39167169

ABSTRACT

This study aimed to elucidate the possible hepatocellular protective role of irbesartan during hepatic ischemia-reperfusion injury (HIRI) and the probable underlying mechanisms. Wistar rats were allocated into four groups: sham; HIRI (control); irbesartan (50 mg/kg) + HIRI; irbesartan (100 mg/kg) + HIRI; irbesartan + GW9662 (1 mg/kg, i.p.) + HIRI. Rats pretreated orally with irbesartan or vehicle for 14 days underwent 45-min hepatic ischemia followed by 60-min reperfusion. Irbesartan preconditioning diminished alanine transaminase (ALT) and aspartate transaminase (AST) serum levels, and reduced extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). Irbesartan decreased proapoptotic BAX (bcl-2-like protein 4), increased anti-apoptotic B-cell lymphoma 2 (BCL2) hepatic content, and thereby reduced BAX/BCL2 ratio. Moreover, irbesartan preconditioning reduced autophagy-related proteins Beclin1 and LC3 II, and elevated p62 (protein responsible for autophagosome degradation). It elevated proliferator-activated receptor γ (PPAR-γ), and reduced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) hepatic gene expression. Also, hepatic protein expressions of nuclear factor kappa-B p65 (NF-κB p65) and caspase-3 were lessoned by irbesartan pretreatment in HIRI rats. However, GW9662 abrogated irbesartan's effect on HIRI. The protective effect of irbesartan on HIRI may be mediated by alleviation of ERK, STAT3, and PPAR-γ inflammatory pathways, exerting anti-apoptotic and anti-autophagic effects in HIRI in rats.

8.
Transl Oncol ; 49: 102095, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39167955

ABSTRACT

BACKGROUND: The immune status is closely linked to cancer progression, metastasis, and prognosis. Lipid metabolism, crucial for reshaping immune status, plays a key role in regulating the advancement of lung adenocarcinoma (LUAD) and deserves further investigation. METHODS: This study classifies LUAD patients into different immune subtypes based on lipid metabolism-related genes and compares the clinical characteristics among these subtypes. Single-multi COX analysis screens out key genes related to prognosis, and a risk feature and prognostic model are constructed. Cell cloning, scratch, transwell, western blotting and flow cytometry cell cycle analysis to detect the function of key genes. A subcutaneous tumor animal model is used to investigate the in vivo function and molecular mechanisms of key genes. RESULTS: LUAD patients are classified into three immune subtypes, among which C3 subtype has lower immune status and higher frequency of gene mutations, and show lower immunoreactivity in immunotherapy. COX analysis identified a prognostic model for four lipid metabolism factors (IGFBP1, NR0B2, PPARA, and POMC). IGFBP1, a core gene in this model, is highly expressed in the C3 subtype. Functionally, knocking down IGFBP1 significantly inhibits tumor cell cloning, scratch, and migration abilities, and downregulates the expression of cell cycle and EMT-related proteins. Knocking down IGFBP1 significantly inhibits tumor burden (P < 0.05). Mechanistically, knocking down IGFBP1 inhibits the activation of PPARα to regulate tumor cell growth. CONCLUSIONS: This study found that lipid metabolism genes are closely related to LUAD, and IGFBP1 may be a key gene in regulating tumor growth and development.

9.
Sci Rep ; 14(1): 19591, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179766

ABSTRACT

Liver cancer is the 4th most lethal form of cancer with a poor prognosis for patients worldwide. Dysregulation of lipid metabolism is related to FA oxidation alternation which can be modified by peroxisome proliferator-activated receptor-α (PPARα). Therefore, it is important to identify the lipid metabolism-related genes regulated by PPARα in liver cancer. Hub genes related to the lipid metabolism pathway of HCC samples treated with PPARα agonist (WY-14,643) were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression and clinical information were obtained from the Gene Expression Omnibus (GEO) database. The network of top main hub genes was visualized by the Cytoscape software using MCODE and CytoHubba plugins. Finally, the expression and clinical association of each hub gene were evaluated using enrichment analysis, TCGA data, GEPIA, GSCA, and q-PCR. Based on our results, the top 5 co-expressed genes including (CPT2, ACSL1, ACSL3, ACOX1, and SLC27A2) were selected as the main hub genes participating in fatty acid metabolism, fatty acid beta-oxidation, and PPAR signaling pathway. All association of higher ACSL3 expression with lower outcomes and survival rates was detected in HCC patients. Therefore, lipid metabolism-related Hub genes regulated by PPARα are potential biomarkers, and they may offer a therapeutical foundation for targeted therapy directed against the HCC antitumor strategy.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Lipid Metabolism , Liver Neoplasms , PPAR alpha , Humans , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/drug effects , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Gene Expression Profiling/methods , Prognosis , Computational Biology/methods
10.
Environ Sci Technol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146316

ABSTRACT

Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.

11.
Drug Dev Ind Pharm ; : 1-27, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159138

ABSTRACT

Lung cancer has become progressively widespread, posing a challenge to traditional chemotherapeutic drugs such as platinum compounds and paclitaxel owing to growing resistance. Along with that, the chemotherapeutic drugs infer major side effects. The usage of natural compounds as chemosensitizers to boost the efficacy of these chemotherapeutic drugs and minimizing their toxicity is a plausible approach. In our investigation, we employed paclitaxel as the standard chemotherapeutic agent and utilized Chrysin-functionalized gold nanoparticles (CHR-AuNP) to augment its cytotoxicity. Gold nanoparticles were chosen for their inherent cytotoxic properties and ability to enhance Chrysin's bioavailability and solubility.Characterization of CHR-AuNP revealed spherical nanoparticles within the nano-size range (35-70 nm) with a stable negative zeta potential of -22 mV, confirmed by physicochemical analyses including UV-Vis spectroscopy, FT-IR, and visual observation of the wine-red coloration. MTT assay cytotoxicity studies demonstrated CHR-AuNP's superior efficacy compared to CHR alone, with synergistic effects observed in combination with paclitaxel, validated by Compusyn software. Morphological changes indicative of apoptosis were more pronounced with combined treatment, corroborated by AO/ETBr staining and Annexin V assays. Furthermore, the combination treatment amplified ROS production and destabilized mitochondrial membrane potential, while altering the expression of pro-apoptotic and anti-apoptotic proteins. Exploring the mechanistic pathways, we found that the drugs upregulated PPAR-γ expression while suppressing Akt and overexpressing PTEN, thereby impeding the Wnt/ß-catenin pathway commonly dysregulated in lung cancer. This highlights the potential of low-dose combination therapy with paclitaxel and CHR-AuNP as a promising strategy for addressing lung cancer's challenges.

12.
Int Immunopharmacol ; 141: 112917, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137630

ABSTRACT

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.

13.
Prostaglandins Leukot Essent Fatty Acids ; 202: 102635, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142221

ABSTRACT

Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.

14.
Bioorg Chem ; 152: 107760, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39197383

ABSTRACT

A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 µM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 µM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 µM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.

15.
Food Chem Toxicol ; : 114967, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197517

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF+DS (25 mg/kg), and CPF+DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and ß-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1ß, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.

16.
J Mol Med (Berl) ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198274

ABSTRACT

Endoplasmic reticulum (ER) stress is a major cause of hepatic steatosis through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signaling to glucose and lipid metabolism. Therefore, dysregulated FoxO6 is involved in hepatic lipogenesis. This study elucidated the role of FoxO6 in ER stress-induced hepatic steatosis in vivo and in vitro. Hepatic ER stress responses and ß-oxidation were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. For the in vitro study, liver cells overexpressing constitutively active FoxO6 and FoxO6-siRNA were treated with high glucose, and lipid metabolism alterations were measured. ER stress-induced FoxO6 activation suppressed hepatic ß-oxidation in vivo. The expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) were significantly decreased in the constitutively active FoxO6 allele. Otherwise, inhibiting ß-oxidation genes were reduced in the FoxO6-siRNA and FoxO6-KO mice. Our data showed that the FoxO6-induced hepatic lipid accumulation was negatively regulated by insulin signaling. High glucose treatment as a hyperglycemia condition caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in liver cells. However, high glucose-mediated ER stress suppressed ß-oxidation gene expression through interactions between PPARα and FoxO6 corresponding to findings in the in vivo study-lipid catabolism is also regulated by FoxO6. Furthermore, insulin resistance suppressed b-oxidation through the interaction between FoxO6 and PPARα promotes hepatic steatosis, which, due to hyperglycemia-induced ER stress, impairs insulin signaling. KEY MESSAGES: Our original aims were to delineate the interrelation between the regulation of PPARα and the transcription factor FoxO6 pathway in relation to lipid metabolism at molecular levels. Evidence on high glucose promoted FoxO6 activation induced lipid accumulation in liver cells. The effect of PPARα activation of the insulin signaling. FoxO6 plays a pivotal role in hepatic lipid accumulation through inactivation of PPARα in FoxO6-overexpression mice.

17.
J Inflamm (Lond) ; 21(1): 32, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198816

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a common spine disease with inflammation as its main pathogenesis. Mulberroside A (MA), isolated from herbal medicine, possesses anti-inflammatory characteristics in many diseases. Whereas, there is little exploration of the therapeutic potential of MA on IVDD. This study aimed at the therapeutic potential of MA on IVDD in vivo and in vitro and the mechanism involved. METHODS: In vitro, western blotting, RT-qPCR, and immunofluorescence analysis were implemented to explore the bioactivity of MA on interleukin-1 beta (IL-1ß)-induced inflammation nucleus pulposus cells (NPCs) isolated from Sprague-Dawley male rats. In vivo, X-ray and MRI were applied to measure the morphological changes, and histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disc sections on puncture-induced IVDD rat models. RESULTS: In vitro, MA up-regulated the expression level of anabolic-related proteins (Aggrecan and Collagen II) and decreased catabolic-related proteins (Mmp2, Mmp3, Mmp9, and Mmp13) in IL-1ß-induced NPCs. Furthermore, MA inhibits the production of pro-inflammatory factors (Inos, Cox-2, and Il-6) stimulated by IL-1ß. Mechanistically, MA inhibited the signal transduction of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways in IL-1ß-induced NPCs. Moreover, MA might bind to Ppar-γ and then suppress the NF-kB pathway. In vivo experiment illustrated that MA mitigates the IVDD progression in puncture-induced IVDD model. X-ray and MRI images showed MA restore the disc height and T2-weighted signal intensity after puncturing. H&E and Safranin O/Fast Green also showed MA also alleviated morphological changes caused by acupuncture. In addition, MA reversed the expression level of Mmp13, Aggrecan, Collagen II, and Ppar-γ induced in IVDD models. CONCLUSIONS: MA inhibited degenerative phenotypes in NPCs and alleviated IVDD progression via inhibiting the MAPK and NF-κB pathways; besides, MA suppressed the NF-κB pathway was attributed to activating Ppar-γ, those supported that MA or Ppar-γ might be a potential drug or target for IVDD.

18.
Biomedicines ; 12(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39200340

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARß/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.

19.
J Agric Food Chem ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186442

ABSTRACT

Colorectal cancer (CRC) is the third-largest cancer worldwide. Lactobacillus can regulate the intestinal barrier and gut microbiota. However, the mechanisms of Lactobacillus that alleviate CRC remained unknown. This study aimed to explore the regulatory effect of Lactobacillus plantarum on CRC and its potential mechanism. CCFM8661 treatment significantly ameliorated CRC compared with phosphate-buffered solution (PBS) treatment in ApcMin/+ mice. In addition, conjugated linoleic acid (CLA) was proved to be the key metabolite for CCFM8661 in ameliorating CRC by molecular biology techniques. Peroxisome proliferator-activated receptor γ (PPAR-γ) was proved to be the key receptor in ameliorating CRC by inhibitor intervention experiments. Moreover, supplementation with CCFM8661 ameliorated CRC by producing CLA to inhibit NF-κB pathway and pro-inflammatory cytokines, up-regulate ZO-1, Claudin-1, and MUC2, and promote tumor cell apoptosis in a PPAR-γ-dependent manner. Metagenomic analysis showed that CCFM8661 treatment significantly increased Odoribacter splanchnicus, which could ameliorate CRC by repairing the intestinal barrier. Clinical results showed that intestinal CLA, butyric acid, PPAR-γ, and Lactobacillus were significantly decreased in CRC patients, and these indicators were significantly negatively correlated with CRC. CCFM8661 alleviated CRC by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. These results will promote the development of dietary probiotic supplements for CRC.

20.
Nutrients ; 16(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125389

ABSTRACT

Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.


Subject(s)
Alzheimer Disease , Isothiocyanates , Neoplasms , Obesity , Wasabia , Humans , Alzheimer Disease/drug therapy , Neoplasms/drug therapy , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Obesity/drug therapy , Animals , Wasabia/chemistry , Signal Transduction/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...