Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Metab Eng ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019251

ABSTRACT

Colistin, also known as polymyxin E, is a lipopeptide antibiotic used to treat infections caused by multidrug-resistant gram-negative bacteria. It is considered a "last-line antibiotic", but its clinical development is hindered by low titer and impurities resulting from the presence of diverse homologs in microbial fermentation. To ensure consistent pharmaceutical activity and kinetics, it is crucial to have high-purity colistin active pharmaceutical ingredient (API) in the pharmaceutical industry. This study focused on the metabolic engineering of a natural colistin producer strain to produce colistin with a high titer and purity. Guided by genome mining, we identified Paenibacillus polymyxa ATCC 842 as a natural colistin producer capable of generating a high proportion of colistin A. By systematically inactivating seven non-essential biosynthetic gene clusters (BGCs) of peptide metabolites that might compete precursors with colistin or inhibit colistin production, we created an engineered strain, P14, which exhibited an 82% increase in colistin titer and effectively eliminated metabolite impurities such as tridecaptin, paenibacillin, and paenilan. Additionally, we engineered the L-2,4-diaminobutyric acid (L-2,4-DABA) pathway to further enhance colistin production, resulting in the engineered strain P19, which boosted a remarkable colistin titer of 649.3 mg/L - a 269% improvement compared to the original strain. By concurrently feeding L-isoleucine and L-leucine, we successfully produced high-purity colistin A, constituting 88% of the total colistin products. This study highlights the potential of metabolic engineering in improving the titer and purity of lipopeptide antibiotics in the non-model strain, making them more suitable for clinical use. These findings indicate that efficiently producing colistin API in high purity directly from fermentation can now be achieved in a straightforward manner.

3.
Front Bioeng Biotechnol ; 12: 1378873, 2024.
Article in English | MEDLINE | ID: mdl-38605990

ABSTRACT

The demand for highly robust and metabolically versatile microbes is of utmost importance for replacing fossil-based processes with biotechnological ones. Such an example is the implementation of Paenibacillus polymyxa DSM 365 as a novel platform organism for the production of value-added products such as 2,3-butanediol or exopolysaccharides. For this, a complete genome sequence is the first requirement towards further developing this host towards a microbial chassis. A genome sequencing project has just been reported for P. polymyxa DSM 365 showing a size of 5,788,318 bp with a total of 47 contigs. Herein, we report the first complete genome sequence of P. polymyxa DSM 365, which consists of 5,889,536 bp with 45 RNAs, 106 tRNAs, 5,370 coding sequences and an average GC content of 45.6%, resulting in a closed genome of P. polymyxa 365. The additional nucleotide data revealed a novel NRPS synthetase that may contribute to the production of tridecaptin. Building on these findings, we initiated the top-down construction of a chassis variant of P. polymyxa. In the first stage, single knock-out mutants of non-essential genomic regions were created and evaluated for their biological fitness. As a result, two out of 18 variants showed impaired growth. The remaining deletion mutants were combined in two genome-reduced P. polymyxa variants which either lack the production of endogenous biosynthetic gene clusters (GR1) or non-essential genomic regions including the insertion sequence ISPap1 (GR2), with a decrease of the native genome of 3.0% and 0.6%, respectively. Both variants, GR1 and GR2, showed identical growth characteristics to the wild-type. Endpoint titers of 2,3-butanediol and EPS production were also unaffected, validating these genome-reduced strains as suitable for further genetic engineering.

4.
Front Microbiol ; 15: 1356891, 2024.
Article in English | MEDLINE | ID: mdl-38585693

ABSTRACT

Tropaeolum majus L. is a versatile edible plant that is widely explored due to its medicinal properties and as a key element in intercropping systems. Its growth could be improved by the use of biofertilizers that can enhance nutrient uptake by the plant or provide tolerance to different abiotic and biotic stresses. In a previous study, 101 endophytes isolated from T. majus roots showed more than three plant growth-promoting (PGP) features in vitro, such as phosphate mineralization/solubilization, production of siderophores, antimicrobial substances and indole-related compounds, and presence of the nifH gene. To provide sustainable alternatives for biofertilization, the genomes of two promising endophytes-CAPE95 and CAPE238-were sequenced to uncover metabolic pathways related to biofertilization. Greenhouse experiments were conducted with 216 seeds and 60 seedlings, half co-inoculated with the endophytes (treatment) and half inoculated with 1X PBS (control), and the impact of the co-inoculation on the plant's bacteriome was accessed through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 were taxonomically assigned as Bacillus thuringiensis and Paenibacillus polymyxa, respectively. Metabolic pathways related to the enhancement of nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis of phytohormones (indole-3-acetic acid precursors) and antimicrobial substances (bacilysin, paenibacillin) were found in their genomes. The in vivo experiments showed that treated seeds exhibited faster germination, with a 20.3% higher germination index than the control on the eleventh day of the experiment. Additionally, treated seedlings showed significantly higher plant height and leaf diameters (p < 0.05). The bacterial community of the treated plants was significantly different from that of the control plants (p < 0.001) and showed a higher richness and diversity of species (Chao and Shannon indexes, p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was also shown in the bacteriome of the treated plants, such as Lysinibacillus and Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa was shown to have great potential for application as a biofertilizer to T. majus plants. The bacterial consortium used here could also be explored in other plant species in the future.

5.
Front Microbiol ; 15: 1359263, 2024.
Article in English | MEDLINE | ID: mdl-38591040

ABSTRACT

In recent years, bacterial-based biocontrol agents (BCA) have become a new trend for the control of fungal diseases such as fusarium wilt that seriously threaten the yield and quality of cucumber, which are transmitted through infested soil and water. This study was set out with the aim of figuring the mechanism of the isolated rhizobacterial strain Paenibacillus polymyxa PJH16 in preventing Fusarium oxysporum f. sp. cucumerinum (Foc). Biocontrol and growth-promoting experiments revealed that bacterial strain causes effective inhibition of the fungal disease through a significant growth-promoting ability of plants, and had activities of ß-1,3-glucanase, cellulase, amylase and protease. It could produce siderophore and indole-3-acetic acid, too. Using the high-throughput sequencing tool PacBio Sequel II system and the database annotation, the bacterial strain was identified as P. polymyxa PJH16 and contained genes encoding for presence of biofilm formation, antimicrobial peptides, siderophores and hydrolyases. From comparing data between the whole genome of P. polymyxa PJH16 with four closely related P. polymyxa strains, findings revealed markedly the subtle differences in their genome sequences and proposed new antifungal substances present in P. polymyxa PJH16. Therefore, P. polymyxa PJH16 could be utilized in bioengineering a microbial formulation for application as biocontrol agent and bio-stimulant, in the future.

6.
Methods Mol Biol ; 2760: 267-280, 2024.
Article in English | MEDLINE | ID: mdl-38468094

ABSTRACT

In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.


Subject(s)
Gene Editing , Paenibacillus polymyxa , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Paenibacillus polymyxa/genetics , Genome
7.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38509027

ABSTRACT

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Humans , Paenibacillus polymyxa/metabolism , Antifungal Agents/chemistry , Anti-Bacterial Agents/metabolism , Paenibacillus/genetics
8.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396880

ABSTRACT

Screening of Bacillus with antagonistic effects on paddy mold pathogens to provide strain resources for biological control of mold in Oryza sativa L. screening of Bacillus isolates antagonistic towards Aspergillus tubingensis from rhizosphere soil of healthy paddy; classification and identification of antagonistic strains by biological characteristics and 16S rDNA sequence analysis; transcriptome sequencing after RNA extraction from Bacillus-treated Aspergillus tubingensis; and extraction of inhibitory crude proteins of Bacillus by ammonium sulfate precipitation; inhibitory crude protein and Bacillus spp. were treated separately for A. tubingensis and observed by scanning electron microscopy (SEM). An antagonistic strain of Bacillus, named B7, was identified as Paenibacillus polymyxa by 16S rDNA identification and phylogenetic evolutionary tree comparison analysis. Analysis of the transcriptome results showed that genes related to secondary metabolite biosynthesis such as antifungal protein were significantly downregulated. SEM results showed that the mycelium of A. tubingensis underwent severe rupture after treatment with P. polymyxa and antifungal proteins, respectively. In addition, the sporocarp changed less after treatment with P. polymyxa, and the sporangium stalks had obvious folds. P. polymyxa B7 has a good antagonistic effect against A. tubingensis and has potential for biocontrol applications of paddy mold pathogens.


Subject(s)
Aspergillus , Bacillus , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genetics , Antifungal Agents/pharmacology , Phylogeny , Antibiosis , Bacillus/genetics , DNA, Ribosomal/genetics , Paenibacillus/genetics
9.
Int J Biol Macromol ; 264(Pt 1): 130323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387628

ABSTRACT

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most important diseases of brassicas. The antagonistic bacterium Paenibacillus polymyxa ZF129 can suppress clubroot while its effectiveness is often unstable. To control clubroot more effectively, the macrobeads for controlled release of ZF129 were prepared using microencapsulation technology. Macrobeads with various ratios of chitosan (2 % w/w): carrageenan (0.3 % w/v) were prepared by an ionotropic gelation method and the bacteria ZF129 was loaded into macrobeads. The 1:1 chitosan: carrageenan showed the maximum swelling ratio (634 %), and the maximum survival rate (61.52 ± 1.12 %) after freeze-drying. Fourier transform infrared revealed the electrostatic interactions between chitosan and carrageenan. The macrobeads can efficiently release ZF129 strains into phosphate buffer solution and reach equilibrium in 48 h. The maximum number of bacteria cells to be released in the soil was observed after 25-30 days. The control efficacy of ZF129 macrobeads (chitosan: carrageenan, 1:1) and ZF129 culture against clubroot disease was 76.33 ± 3.65 % and 59.76 ± 4.43 % in greenhouse experiments, respectively and the control efficacy was calculated as 60.74 ± 5.00 % for ZF129 macrobeads and 40.94 ± 4.05 % for ZF129 culture under field experiments, respectively. The ZF129 macrobeads had significant growth-promoting effects on pak choi and Chinese cabbage. The encapsulation method described in this study is a prudent approach toward efficient biopesticides utilization with reduced environmental implications.


Subject(s)
Brassica , Chitosan , Paenibacillus polymyxa , Carrageenan , Crops, Agricultural
10.
Microbiol Res ; 282: 127639, 2024 May.
Article in English | MEDLINE | ID: mdl-38354626

ABSTRACT

Soil salinity negatively affects microbial communities, soil fertility, and agricultural productivity and has become a major agricultural problem worldwide. Plant growth-promoting rhizobacteria (PGPR) with salt tolerance can benefit plant growth under saline conditions and diminish the negative effects of salt stress on plants. In this study, we aimed to understand the salt-tolerance mechanism of Paenibacillus polymyxa at the genetic and metabolic levels and elucidate the mechanism of strain SC2 in promoting maize growth under saline conditions. Under salt stress, we found that strain SC2 promoted maize seedling growth, which was accompanied by a significant upregulation of genes encoding for the biosynthesis of peptidoglycan, polysaccharide, and fatty acid, the metabolism of purine and pyrimidine, and the transport of osmoprotectants such as trehalose, glycine betaine, and K+ in strain SC2. To further enhance the salt resistance of strain SC2, three mutants (SC2-11, SC2-13, and SC2-14) with higher capacities for salt resistance and exopolysaccharide synthesis were obtained via atmospheric and room-temperature plasma mutagenesis. In saline-alkaline soil, the mutants showed better promoting effect on maize seedlings than wild-type SC2. The fresh weight of maize seedlings was increased by 68.10% after treatment with SC2-11 compared with that of the control group. The transcriptome analysis of maize roots demonstrated that SC2 and SC2-11 could induce the upregulation of genes related to the plant hormone signal transduction, starch and sucrose metabolism, reactive oxygen species scavenging, and auxin and ethylene signaling under saline-alkaline stress. In addition, various transcription factors, such as zinc finger proteins, ethylene-responsive-element-binding protein, WRKY, myeloblastosis proteins, basic helix-loop-helix proteins, and NAC proteins, were up-regulated in response to abiotic stress. Moreover, the microbial community composition of maize rhizosphere soil after inoculating with strain SC2 was varied from the one after inoculating with mutant SC2-11. Our results provide new insights into the various genes involved in the salt resistance of strain SC2 and a theoretical basis for utilizing P. polymyxa in saline-alkaline environments.


Subject(s)
Paenibacillus polymyxa , Seedlings , Seedlings/microbiology , Paenibacillus polymyxa/genetics , Zea mays/microbiology , Soil , Ethylenes/metabolism
11.
Synth Syst Biotechnol ; 9(1): 176-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348399

ABSTRACT

Polymyxin B, produced by Paenibacillus polymyxa, is used as the last line of defense clinically. In this study, exogenous mixture of precursor amino acids increased the level and proportion of polymyxin B1 in the total of polymyxin B analogs of P. polymyxa CJX518-AC (PPAC) from 0.15 g/L and 61.8 % to 0.33 g/L and 79.9 %, respectively. The co-culture of strain PPAC and recombinant Corynebacterium glutamicum-leu01, which produces high levels of threonine, leucine, and isoleucine, increased polymyxin B1 production to 0.64 g/L. When strains PPAC and C. glu-leu01 simultaneously inoculated into an optimized medium with 20 g/L peptone, polymyxin B1 production was increased to 0.97 g/L. Furthermore, the polymyxin B1 production in the co-culture of strains PPAC and C. glu-leu01 increased to 2.21 g/L after optimized inoculation ratios and fermentation medium with 60 g/L peptone. This study provides a new strategy to improve polymyxin B1 production.

12.
ACS Synth Biol ; 13(2): 658-668, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38319655

ABSTRACT

The use of Paenibacillus polymyxa as an industrial producer is limited by the lack of suitable synthetic biology tools. In this study, we identified a native sucrose operon in P. polymyxa. Its structural and functional relationship analysis revealed the presence of multiple regulatory elements, including four ScrR-binding sites and a catabolite-responsive element (CRE). In P. polymyxa, we established a cascade T7 expression system involving an integrated T7 RNA polymerase (T7P) regulated by the sucrose operon and a T7 promoter. It enables controllable gene expression by sucrose and regulatory elements, and a 5-fold increase in expression efficiency compared with the original sucrose operon was achieved. Further deletion of SacB in P. polymyxa resulted in a 38.95% increase in the level of thermophilic lipase (TrLip) production using the cascade T7 induction system. The results highlight the effectiveness of sucrose regulation as a novel synthetic biology tool, which facilitates exploring gene circuits and enables their dynamic regulation.


Subject(s)
Paenibacillus polymyxa , Paenibacillus polymyxa/genetics , Paenibacillus polymyxa/metabolism , Sucrose/metabolism , Promoter Regions, Genetic/genetics , Operon/genetics
13.
Int J Biol Macromol ; 261(Pt 1): 129663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278396

ABSTRACT

Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolism , Paenibacillus/metabolism , Plant Growth Regulators/metabolism , Plant Development , Plants/metabolism
14.
Appl Microbiol Biotechnol ; 108(1): 17, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170316

ABSTRACT

Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genetics , Polymyxin B/pharmacology , Polymyxin B/metabolism , Paenibacillus/genetics , Paenibacillus/metabolism , Calcium/metabolism , Magnesium , Polymyxins/pharmacology
15.
Phytopathology ; 114(3): 538-548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37698495

ABSTRACT

Meloidogyne incognita is one of the most destructive agricultural pathogens around the world, resulting in severe damage to yield and quality in agricultural production. Biological control promises to be a great potential alternative to chemical agents against M. incognita. Paenibacillus polymyxa J2-4, isolated from ginger plants injured by M. incognita, has shown excellent biocontrol efficacy against M. incognita in cucumber. In vitro experiments with the strain J2-4 resulted in a correct mortality rate of 88.79% (24 h) and 98.57% (48 h) for second-stage juveniles (J2s) of M. incognita. Strain J2-4 significantly suppressed nematode infection on potted plants, with a 65.94% reduction in galls and a 51.64% reduction in eggs compared with the control. The split-root assay demonstrated that strain J2-4 not only reduced J2s' invasion but also inhibited nematode development through the dependence on salicylic acid and jasmonic acid signaling of strain J2-4 induction of plant resistance in local and systemic roots of cucumbers. Genomic analysis of strain J2-4 indicated biosynthetic gene clusters encoding polymyxin, fusaricidin B, paenilan, and tridecaptin. In addition, genetic analysis showed that none of the genes encoding virulence factors were detected in the genome of J2-4 compared with the pathogenic Bacillus species. Taking all the data together, we conclude that P. polymyxa J2-4 has potential as a biological control agent against M. incognita on cucumbers and can be considered biologically safe when used in agriculture.


Subject(s)
Bacillus , Cucumis sativus , Paenibacillus polymyxa , Tylenchoidea , Animals , Paenibacillus polymyxa/genetics , Plant Diseases/prevention & control
16.
Microbiol Spectr ; 12(1): e0229323, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38054717

ABSTRACT

IMPORTANCE: Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Polymyxins , Paenibacillus polymyxa/genetics , Paenibacillus/genetics
17.
Pest Manag Sci ; 80(3): 1289-1299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899496

ABSTRACT

BACKGROUND: Root knot nematodes cause great damage to crops worldwide. Due to the negative effects of the application of fumigant and old chemical nematicides, biological nematicides have drawn increasing attention in recent years. Here we tested the fumigant activity of the volatile organic compounds (VOCs) blends emitted from Paenibacillus polymyxa and pure commercial VOCs against M. incognita. RESULTS: In this study, we investigated whether P. polymyxa strain J2-4 could produce VOCs that exhibit nematicidal activity. In vitro assays indicated that J2-4 VOCs were highly toxic to second stage juveniles (J2s) and could inhibit egg hatching. Three-layered pot experiments showed that the number of nematodes that penetrating in cucumber roots was reduced by 69.27% after the application of J2-4 VOCs under greenhouse conditions. We identified 14 volatiles using solid-phase micro-extraction gas chromatography-mass spectrometry. The efficacy of six commercially available VOCs, namely 2-isobutyl-3-methylpyrazine, 2,4-dimethoxybenzaldoxime, 2-dodecanone, 2-tridecanol, 2-tridecanone, and 2-tetradecanol, against M. incognita were examined. Except for 2,4-dimethoxybenzaldoxime, the remaining five VOCs showed strong direct-contact nematicidal activity against J2s of M. incognita, and only 2-isobutyl-3-methylpyrazine showed strong fumigant activity against J2s of M. incognita. In pot experiments, 2-isobutyl-3-methylpyrazine and 2-dodecanone reduced the number of root galls by about 70%, and 2-tridecanone reduced the number of root galls and egg masses by about 63% compared with controls. CONCLUSION: Paenibacillus polymyxa strain J2-4 exhibited high fumigant activity against M. incognita. Our results provide evidence for the use of J2-4 and its VOCs as biocontrol agents in the management of root-knot nematodes. © 2023 Society of Chemical Industry.


Subject(s)
Ketones , Paenibacillus polymyxa , Pesticides , Solanum lycopersicum , Tylenchoidea , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Antinematodal Agents/pharmacology , Pesticides/pharmacology
18.
Poult Sci ; 103(2): 103239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035472

ABSTRACT

The search for a natural antimicrobial agent is ongoing and critical because of the rise and rapid proliferation of antibiotic-resistant pathogenic bacteria. The current study aims to examine the effect of Paenibacillus polymyxa AM20 as an alternative antibiotic and feed additive on Indian river broiler performance, digestive enzymes, thyroid hormones, lipid profile, hepatosomatic index, immunological response, gut bacteria, and antioxidant parameters. The bacterial isolate AM20 was identified at the gene level by isolating DNA and using PCR to detect genes. Based on 16S rRNA gene sequence analysis, the bacterial isolate was identified as Paenibacillus polymyxa. One hundred twenty Indian river broilers (1-day old) were randomly divided into 4 groups of 10 chicks each, with 3 replicates. The control group was fed a basal diet only, while the other 3 were administered control diets supplemented with P. polymyxa at 3 concentrations: 0.5, 1, and 1.5 mg/kg. The findings revealed that all groups that received graded amounts of P. polymyxa increased all growth parameters throughout the study. P. polymyxa treatment at 1.5 mg/kg increased body gain by 9% compared to the control due to increased feed intake (P = 0.0001), growth rate (P = 0.0001), and decreased feed conversion ratio. Compared to the control group, P. polymyxa (1.5 mg/kg) enhanced kidney functions in chickens by reducing uric acid and creatinine levels (P = 0.0451). Compared to the control group, alanine aminotransferase and aspartate transaminase levels in the liver were significantly reduced at all P. polymyxa doses. Liver function values were highest for P. polymyxa at 1.5 mg/kg. Compared to the control group, those whose diets included P. polymyxa had significantly better blood cholesterol levels, high-density lipoprotein, low-density lipoprotein, immunological response, thyroid function, and gut microbiota. In general, broiler chickens' economic efficiency was improved by including P. polymyxa in their diet, which also improved their growth performance, carcass dressing, specific blood biochemical levels and enzymes, and the composition of the gut microbiota.


Subject(s)
Paenibacillus polymyxa , Probiotics , Animals , Antioxidants/metabolism , Chickens/physiology , RNA, Ribosomal, 16S , Diet/veterinary , Dietary Supplements , Probiotics/pharmacology , Anti-Bacterial Agents , Immunity , Thyroid Hormones , Lipids , Animal Feed/analysis
19.
Plant Dis ; 108(3): 700-710, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37580883

ABSTRACT

Strawberry is a popular fruit with valuable nutrition and an attractive fragrance, but its production and propagation are limited by various diseases, including anthracnose and gray mold. For disease management, biological control measures are environmentally friendly and good alternatives to fungicides to avoid crop losses, reduce carbon emissions, and improve food safety. In this study, Paenibacillus polymyxa TP3, which originated from the strawberry phyllosphere, was shown to antagonize the anthracnose fungal pathogen Colletotrichum siamense and reduce leaf symptoms on strawberry plants. Several mass spectra corresponding to fusaricidin were detected in the confrontation assay of P. polymyxa TP3 and C. siamense by image mass spectrometry. The transcription of fusA and fusG in the fusaricidin biosynthesis gene cluster increased while P. polymyxa TP3 was cultured in the medium containing the culture filtrate of C. siamense, as detected by reverse-transcription polymerase chain reaction, indicating the involvement of fusaricidins in P. polymyxa TP3 antagonism against the anthracnose pathogen. Further disease control assays demonstrated the time frame and spatial mode of P. polymyxa TP3-induced systemic resistance of strawberry against C. siamense. The transcript level of the marker gene FaPDF1.2 of the jasmonic acid pathway increased in strawberry leaves after drenching treatment with P. polymyxa TP3, and the callose deposition was enhanced by further flg22 treatment. In addition, P. polymyxa TP3 treatments of the strawberry mother plants reduced C. siamense infection in the daughter plants, which would be a potent feature for the application of P. polymyxa TP3 in strawberry nurseries and fields to reduce the impact of diseases, especially anthracnose.


Subject(s)
Fragaria , Fungicides, Industrial , Paenibacillus polymyxa , Peptide Fragments , Thymopoietins , Paenibacillus polymyxa/genetics , Fragaria/microbiology , Fungicides, Industrial/pharmacology
20.
Microb Pathog ; 187: 106517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159617

ABSTRACT

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Subject(s)
Atractylodes , Fusarium , Paenibacillus polymyxa , Plant Diseases/prevention & control , Plant Diseases/microbiology , Mycelium
SELECTION OF CITATIONS
SEARCH DETAIL
...