Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Microorganisms ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37110284

ABSTRACT

Many farmers' incomes in developing countries depend on the cultivation of major crops grown in arid and semi-arid regions. The agricultural productivity of arid and semi-arid areas primarily relies on chemical fertilizers. The effectiveness of chemical fertilizers needs to improve by integration with other sources of nutrients. Plant growth-promoting bacteria can solubilize nutrients, increase plant nutrient uptake, and supplement chemical fertilizers. A pot experiment evaluated the promising plant growth-promoting bacterial strain's effectiveness in promoting cotton growth, antioxidant enzymes, yield, and nutrient uptake. Two phosphate solubilizing bacterial strains (Bacillus subtilis IA6 and Paenibacillus polymyxa IA7) and two zinc solubilizing bacterial strains (Bacillus sp. IA7 and Bacillus aryabhattai IA20) were coated on cotton seeds in a single as well as co-inoculation treatments. These treatments were compared with uninoculated controls in the presence and absence of recommended chemical fertilizer doses. The results showed the co-inoculation combination of Paenibacillus polymyxa IA7 and Bacillus aryabhattai IA20 significantly increased the number of bolls, seed cotton yield, lint yield, and antioxidants activities, including superoxide dismutase, guaiacol peroxidase, catalase, and peroxidase. Co-inoculation combination of Bacillus subtilis IA6 and Bacillus sp. IA16 promoted growth attributes, including shoot length, root length, shoot fresh weight, and root fresh weight. This co-inoculation combination also increased soil nutrient content. At the same time, Paenibacillus polymyxa IA7 + Bacillus aryabhattai IA20 increased nutrient uptake by plant shoots and roots compared.

2.
Microbiol Spectr ; 11(3): e0502822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37071006

ABSTRACT

Xylan is the most abundant hemicellulose in hardwood and graminaceous plants. It is a heteropolysaccharide comprising different moieties appended to the xylose units. Complete degradation of xylan requires an arsenal of xylanolytic enzymes that can remove the substitutions and mediate internal hydrolysis of the xylan backbone. Here, we describe the xylan degradation potential and underlying enzyme machinery of the strain, Paenibacillus sp. LS1. The strain LS1 was able to utilize both beechwood and corncob xylan as the sole source of carbon, with the former being the preferred substrate. Genome analysis revealed an extensive xylan-active CAZyme repertoire capable of mediating efficient degradation of the complex polymer. In addition to this, a putative xylooligosaccharide ABC transporter and homologues of the enzymes involved in the xylose isomerase pathway were identified. Further, we have validated the expression of selected xylan-active CAZymes, transporters, and metabolic enzymes during growth of the LS1 on xylan substrates using qRT-PCR. The genome comparison and genomic index (average nucleotide identity [ANI] and digital DNA-DNA hybridization) values revealed that strain LS1 is a novel species of the genus Paenibacillus. Lastly, comparative genome analysis of 238 genomes revealed the prevalence of xylan-active CAZymes over cellulose across the Paenibacillus genus. Taken together, our results indicate that Paenibacillus sp. LS1 is an efficient degrader of xylan polymers, with potential implications in the production of biofuels and other beneficial by-products from lignocellulosic biomass. IMPORTANCE Xylan is the most abundant hemicellulose in the lignocellulosic (plant) biomass that requires cooperative deconstruction by an arsenal of different xylanolytic enzymes to produce xylose and xylooligosaccharides. Microbial (particularly, bacterial) candidates that encode such enzymes are an asset to the biorefineries to mediate efficient and eco-friendly deconstruction of xylan to generate products of value. Although xylan degradation by a few Paenibacillus spp. is reported, a complete genus-wide understanding of the said trait is unavailable till date. Through comparative genome analysis, we showed the prevalence of xylan-active CAZymes across Paenibacillus spp., therefore making them an attractive option towards efficient xylan degradation. Additionally, we deciphered the xylan degradation potential of the strain Paenibacillus sp. LS1 through genome analysis, expression profiling, and biochemical studies. The ability of Paenibacillus sp. LS1 to degrade different xylan types obtained from different plant species, emphasizes its potential implication in lignocellulosic biorefineries.


Subject(s)
Cellulose , Paenibacillus , Xylans/metabolism , Paenibacillus/genetics , Xylose/metabolism , DNA
3.
Pathogens ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422618

ABSTRACT

Lactic acid bacteria (LAB) are an essential part of the microbiota of the digestive tract of honeybees (Apis mellifera L.). Antagonistic activity of 103 LAB strains (isolates from different environments) against 21 honeybee pathogens/opportunistic pathogens (with agar slab method) was screened. The growth of Paenibacillus genus was inhibited to the most extent. The highest antagonistic activity was demonstrated by Lacticaseibacillus casei 12AN, while the lowest by Apilactobacillus kunkeei DSM 12361, a species naturally inhabiting the honeybee gut. LAB isolated from the honeybee environment demonstrated stronger antagonism against pathogens than collection strains. The antagonistic activity of cell-free supernatants (CFSs) from 24 LAB strains against 7 honeybee pathogens was additionally assessed at physiological pH with the microtitration method. The same was determined for selected CFSs at neutralized pH. CFSs with physiological pH showed significantly stronger antibacterial activity than CFSs with neutralized pH. The results confirmed that the mechanism of antimicrobial activity of LAB is acidification of the environment. The obtained results may, in the future, contribute to a better understanding of the antagonistic properties of LAB and the construction of a probiotic preparation to increase the viability of honeybee colonies.

4.
Biology (Basel) ; 11(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35625473

ABSTRACT

In this study, thirteen isolates, which were possibly expected to fix nitrogen, were isolated from soil and pea root nodules and identified by the gene analysis of 16S rDNA sequences. Two of these isolates that were able to form endospores and grow on nitrogen-free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increase the amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grains and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and the accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate were assigned. During the cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and a yeast extract were determined as the most suitable carbon and nitrogen sources, whose optimal concentrations were 100 g L-1 and 10 g L-1, respectively. The optimal pH range for the cell culture was between 6.5 and 7.0, and the optimal air flow rate was 0.4 vvm. It was found that the air flow has an effect on biomass production and endospore formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, the cultured cell number was, on average, 2.2 × 109 cfu m L-1.

5.
Bioelectrochemistry ; 144: 108011, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34864272

ABSTRACT

A novel strain of Gram-positive bacteria Paenibacillus profundus YoMME was recognized by sequencing of 16S rRNA gene and after that tested for exoelectrogenicity for the first time. It was found that at an applied potential of -0.195 V (vs. SHE) the bacteria are capable of generating electricity and forming electroactive biofilms for 3-4 days. A tendency for the decrease in double-layer capacitance and the increase in the charge transfer resistance during the maturation of the biofilm was established. The formed bioanodes were used as a part of a membrane-electrode assembly (MEA) together with a selected cathode (E-Tek) and a separator (Zirfon). The applicability of MEA with the bioanode was tested by operating a newly designed bioelectrochemical system in a microbial fuel cell (MFC) or microbial electrolysis cell (MEC) mode. A current density of 200 mA m-2 was generated by the MFC after the improvement of the cathodic reaction through facilitated air access. The Coulombic efficiency in different MFC runs ranged from 5.2 to 7.4%. It was also determined that 0.65 V applied cell voltage is appropriate for the operation of the cell in the electrolysis mode, during which a current density of 2-3 Am-2 was reached. This, along with the evolved gas on the cathode, shows that as an anodic biocatalyst P. profundus YoMME assists the electrolysis processes at a significantly lower voltage than the theoretical one (1.23 V) for water decomposition. The hydrogen production rate varied between 0.5 and 0.7 m3/m3d and the cathodic hydrogen recovery ranged from 49.5 to 61.5 %. The estimated energy efficiency based on the electricity input exceeds 100 %, which indicates that additional energy is being gained from the biotic oxidation of the available organics.


Subject(s)
RNA, Ribosomal, 16S
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33795512

ABSTRACT

Bacteria have evolved a diverse array of signaling pathways that enable them to quickly respond to environmental changes. Understanding how these pathways reflect environmental conditions and produce an orchestrated response is an ongoing challenge. Herein, we present a role for collective modifications of environmental pH carried out by microbial colonies living on a surface. We show that by collectively adjusting the local pH value, Paenibacillus spp., specifically, regulate their swarming motility. Moreover, we show that such pH-dependent regulation can converge with the carbon repression pathway to down-regulate flagellin expression and inhibit swarming in the presence of glucose. Interestingly, our results demonstrate that the observed glucose-dependent swarming repression is not mediated by the glucose molecule per se, as commonly thought to occur in carbon repression pathways, but rather is governed by a decrease in pH due to glucose metabolism. In fact, modification of the environmental pH by neighboring bacterial species could override this glucose-dependent repression and induce swarming of Paenibacillus spp. away from a glucose-rich area. Our results suggest that bacteria can use local pH modulations to reflect nutrient availability and link individual bacterial physiology to macroscale collective behavior.


Subject(s)
Bacterial Physiological Phenomena , Microbial Interactions , Paenibacillus/physiology , Flagellin/metabolism , Hydrogen-Ion Concentration , Proteus mirabilis/physiology , Xanthomonas/physiology
8.
J Dairy Sci ; 102(9): 8273-8289, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31326179

ABSTRACT

The occurrence of Paenibacillus and Clostridium spores in silage is of great concern for dairy producers because their spores can contaminate milk and damage processed milk and semi-hard cheeses. Spoiled silage is considered to be the main contamination source of the total mixed ration (TMR), feces of dairy cows, and consequently bulk tank milk via the contamination of cow teats by dirt during milking. The presence of an anaerobic and facultative anaerobic sporeformer population in different matrices (soil, corn silage, other feeds, TMR, feces, and milk) and its transmission pathway has been studied on 49 dairy farms by coupling plate count data with 16S-DNA identification. The different matrices have shown a high variability in the anaerobic and facultative anaerobic spore count, with the highest values being found in the aerobically deteriorated areas of corn silages. Clostridium tyrobutyricum, Paenibacillus macerans, and Paenibacillus thermophilus were detected in all the matrices. The TMR spore count was influenced by the amount of spoiled corn silage in the TMR and by the care taken when cleaning the spoiled silage before feed-out. Most of the farms that prevent the presence of visible moldy silage in the silo and carefully clean to remove molded spots were able to maintain their TMR spore counts below 4.0 log spores/g. When a level of 4.5 log spores/g of TMR was exceeded, the feces presented a greater contamination than 3.0 log spores/g. Moreover, the higher the number of spores in the feces was, the higher the number of spores in the milk. Most of the farms that presented a feces contamination greater than 5.0 log spores/g had a higher milk spore contamination than 1,000 spores/L. Careful animal cleaning and good milking practices have been found to be essential to maintain low levels of contamination in bulk tank milk, but it has emerged that only by coupling these practices with a correct silage management and cleaning during TMR preparation can the contamination of milk by spores be kept at a low level. It has been found that aerobically deteriorated silage has a great capacity to contaminate TMR and consequently to increase the risk of milk spore contamination, even when routine milking practices are adopted correctly.


Subject(s)
Animal Feed/microbiology , Clostridium/isolation & purification , Dairying/methods , Milk/microbiology , Paenibacillus/isolation & purification , Spores, Bacterial/isolation & purification , Animal Husbandry/methods , Animals , Cattle , Clostridium tyrobutyricum/isolation & purification , Colony Count, Microbial/veterinary , Farms , Feces/microbiology , Female , Food Microbiology/methods , Hygiene , Mammary Glands, Animal , Risk Factors , Silage
9.
Int J Antimicrob Agents ; 53(6): 838-843, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928682

ABSTRACT

The alarming burden of antibiotic resistance in nosocomial pathogens warrants the discovery and development of new and effective antimicrobial compounds. Small cationic antimicrobial peptides seem to be a promising therapeutic alternative to fight multi-drug resistance. This study investigated the in-vitro potential of a previously reported lantibiotic, paenibacillin, from the clinical perspective. An antimicrobial peptide, M152-P4, was isolated, purified and characterized from a mud isolate, and its susceptibility was determined in clinical isolates of Staphylococcus aureus and Enterococcus spp. Time-kill kinetics, resistance, probable mode of action, haemolytic activity and mammalian cytotoxicity were investigated. M152-P4 was identified as paenibacillin based on mass spectroscopy data, amino acid analysis and biosynthetic gene cluster analysis. It had potent antibacterial activity against the Gram-positive pathogens tested, with minimum inhibitory concentrations from 0.1 to 1.56 µM. It appeared very challenging for S. aureus to develop resistance to this compound. Also, paenibacillin penetrated the outer layer of bacteria, and depolarized the membrane completely by creating pores in the plasma membrane with better potential than nisin. Paenibacillin showed no haemolysis up to 60 µM, and the half maximal inhibitory concentration on mammalian cell lines was >100 µM. These results highlight the excellent antibacterial properties of paenibacillin in clinically relevant pathogens. It is stable in the presence of serum, and non-haemolytic and non-cytotoxic even above the therapeutic concentration. Further research efforts regarding toxicity and in-vivo efficacy are necessary to develop paenibacillin as a next-generation therapeutic drug to overcome multi-drug resistance in Gram-positive pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteriocins/pharmacology , Enterococcus/drug effects , Paenibacillus/metabolism , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/toxicity , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/toxicity , Bacteriocins/chemistry , Bacteriocins/isolation & purification , Bacteriocins/toxicity , Biosynthetic Pathways/genetics , Cell Line , Cell Survival/drug effects , Drug Resistance, Bacterial , Humans , Mass Spectrometry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Multigene Family , Paenibacillus/classification , Paenibacillus/isolation & purification , Sequence Analysis, Protein , Sewage/microbiology
10.
J Dairy Sci ; 100(11): 8783-8795, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28865849

ABSTRACT

The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized fluid milk. To facilitate development of strategies to minimize contamination of raw milk with psychrotolerant Bacillales spores, we conducted a longitudinal study of 10 New York State dairy farms, which included yearlong monthly assessments of the frequency and levels of bulk tank raw milk psychrotolerant spore contamination, along with administration of questionnaires to identify farm management practices associated with psychrotolerant spore presence over time. Milk samples were first spore pasteurized (80°C for 12 min) and then analyzed for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) for 7, 14, and 21 d after SP. Overall, 41% of samples showed sporeformer counts of >20,000 cfu/mL at d 21, with Bacillus and Paenibacillus spp. being predominant causes of high sporeformer counts. Statistical analyses identified 3 management factors (more frequent cleaning of the bulk tank area, the use of a skid steer to scrape the housing area, and segregating problem cows during milking) that were all associated with lower probabilities of d-21 Bacillales spore detection in SP-treated bulk tank raw milk. Our data emphasize that appropriate on-farm measures to improve overall cleanliness and cow hygiene will reduce the probability of psychrotolerant Bacillales spore contamination of bulk tank raw milk, allowing for consistent production of raw milk with reduced psychrotolerant spore counts, which will facilitate production of HTST-pasteurized milk with extended refrigerated shelf life.


Subject(s)
Bacillales/isolation & purification , Cattle , Milk/microbiology , Animal Husbandry , Animals , Colony Count, Microbial , Farms , Female , Longitudinal Studies , New York , Spores, Bacterial , Temperature
11.
Environ Sci Pollut Res Int ; 24(23): 19057-19067, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28660507

ABSTRACT

Paenibacillus species isolated from a variety of natural sources have shown to be important glycoside hydrolases producers. These enzymes play a key role in bio-refining applications, as they are central biocatalysts for the processing of different types of polymers from vegetal biomass. Xylanase production by three native isolates belonging to the genus Paenibacillus was approached by utilizing mineral-based medium and agricultural by-products as a convenient source to produce biocatalysts suitable for their degradation. While varieties of alkali pretreated sugarcane bagasse were useful substrates for the strains from Paenibacillus genus evaluated, raw sugarcane bagasse was the most effective substrate for endoxylanase production by Paenibacillus sp. AR247. This strain was then selected to further improvement of its enzyme production by means of a two-step statistical approach. It was determined that the carbon source, provided as an inexpensive agro-waste, as well as phosphate and magnesium were the culture media components that most influenced the enzyme production, which was improved three times compared to the screening results.


Subject(s)
Carbon , Cellulose , Saccharum , Agriculture , Biomass , Carbon/metabolism , Cellulose/metabolism , Culture Media , Endo-1,4-beta Xylanases , Paenibacillus/metabolism , Saccharum/metabolism
12.
Iran J Biotechnol ; 15(2): 120-127, 2017.
Article in English | MEDLINE | ID: mdl-29845059

ABSTRACT

Background: A number of microorganisms and their enzymes have been reported as xanthan depolymerizers. Paenibacillus species are well-known polysaccharide hydrolyzing bacteria. However, Paenibacillus alginolyticus and Paenibacillus sp. XD are the only species in the genus which are now known to degrade xanthan. Objectives: Complete biodegradation of the xanthan exopolysaccharide is a rarely found capability among microorganisms. The aim of this study is to survey xanthanase producing bacteria with an appropriate bioactivity for the biopolymer degradation under different environmental conditions. Materials and Methods: The bacteria were isolated based on viscosity reduction of the xanthan solution. Bacterial isolates were identified using rep-PCR (repetitive element-based genomic fingerprinting) and 16S rDNA sequencing. Xanthanases were identified using rep-PCR (repetitive element-based genomic fingerprinting) and 16S rDNA sequencing. Xanthanases were characterized by measuring their activity at different temperatures, pH values, and NaCl concentrations. Degradation of other polysaccharides and xanthan degradation products were investigated based on the screening plate method and TLC (thin-layer chromatography), respectively. Results:Six isolates from different Paenibacillus species with a complete xanthan degrading capability were isolated from Urmia Lake. Phylogenetic analysis placed these strains within the genus Paenibacillus with the closest relatives that were found to be P. nanensis, P. phyllosphaerae, P. agaridevorans, P. agarexedens, and P. taohuashanense. These isolates displayed different levels of the xanthan biodegradation activity in temperatures ranging from 15 to 55°C and pH values from 4 to 11. Xanthanolytic activity was generally prevented in presence of NaCl (> 0.1 mol.L-1). Furthermore, the isolated Paenibacillus spp. could degrade several other polysaccharides including xylan, CMC (carboxymethyl cellulose), starch, alginate, and pectin. Conclusion: Novel strains of the six different Paenibacillus species that were introduced in the present study are able to produce xanthanases with interesting characteristics. In light of the results from this study, special applications, particularly in healthcare, medicine, and the environment is hereby proposed for these enzymes.

13.
New Microbes New Infect ; 11: 45-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27257492

ABSTRACT

Paenibacillus spp. are bacteria present in the environment but are rarely isolated in humans. Here we report the first case of bone infection caused by Paenibacillus turicensis and a second case of human infection caused by this bacterium.

14.
J Microbiol Biotechnol ; 26(3): 549-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26699743

ABSTRACT

Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria.


Subject(s)
Aphids/physiology , Capsicum/parasitology , Paenibacillus/physiology , Plant Diseases/parasitology , Plant Exudates/metabolism , Plant Leaves/parasitology , Plant Roots/metabolism , Soil Microbiology , Animals , Capsicum/immunology , Capsicum/microbiology , Feeding Behavior , Plant Roots/microbiology , Plant Roots/parasitology , Rhizosphere
15.
Mycobiology ; 42(2): 158-66, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25071385

ABSTRACT

In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

16.
J Dairy Sci ; 97(7): 4083-96, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24819135

ABSTRACT

Some strains of sporeforming bacteria (e.g., Bacillus spp. and Paenibacillus spp.) can survive pasteurization and subsequently grow at refrigeration temperatures, causing pasteurized fluid milk spoilage. To identify farm management practices associated with different levels of sporeformers in raw milk, a bulk tank sample was obtained from and a management and herd health questionnaire was administered to 99 New York State dairy farms. Milk samples were spore pasteurized [80°C (176°F) for 12 min] and subsequently analyzed for most-probable number and for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) at 7, 14, and 21 d after SP. Management practices were analyzed for association with sporeformer counts and bulk tank somatic cell counts. Sixty-two farms had high sporeformer growth (≥3 log cfu/mL at any day after SP), with an average sporeformer count of 5.20 ± 1.41 mean log10 cfu/mL at 21 d after SP. Thirty-seven farms had low sporeformer numbers (<3 log cfu/mL for all days after SP), with an average sporeformer count of 0.75 ± 0.94 mean log10 cfu/mL at 21 d after SP. Farms with >25% of cows with dirty udders in the milking parlor were 3.15 times more likely to be in the high category than farms with ≤10% of milking cows with dirty udders. Farms with <200 cows were 3.61 times more likely to be in the high category than farms with ≥200 cows. Management practices significantly associated with increased bulk tank somatic cell count were a lack of use of the California mastitis test at freshening and >25% of cows with dirty udders observed in the milking parlor. Changes in management practices associated with cow cleanliness may directly ensure longer shelf life and higher quality of pasteurized fluid milk.


Subject(s)
Bacteria/classification , Cattle/microbiology , Dairying/methods , Microbiota , Milk/microbiology , Animals , Bacteria/isolation & purification , Cell Count/veterinary , Female , Mammary Glands, Animal/microbiology , New York , Pasteurization
17.
Neonatal Medicine ; : 69-73, 2014.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-43775

ABSTRACT

Paenibacillus spp. are gram-positive, rod-shaped, facultative anaerobic bacteria found in nature and rarely cause diseases in humans. We report our experience with Paenibacillus-induced sepsis complicated with pneumatocele in a very low birth weight male infant with a gestational age of 29 weeks and 5 days and a birth weight of 1,380 g, who was born by cesarean section with because of preterm labor and premature rupture of membrane. On day 12 after admission, the patient presented oxygen desaturation without apnea and fever. We identified pleural effusion on chest radiography and diagnosed pneumatocele on low-dose chest computed tomography. An empirical antibiotic was administered to treat the infection. The patient's blood culture revealed gram-positive rods, and Paenibacillus spp. was identified using16s rRNA sequencing.


Subject(s)
Female , Humans , Infant , Male , Pregnancy , Apnea , Bacteria, Anaerobic , Birth Weight , Cesarean Section , Fever , Gestational Age , Gram-Positive Rods , Infant, Very Low Birth Weight , Membranes , Obstetric Labor, Premature , Oxygen , Paenibacillus , Pleural Effusion , Radiography , Rupture , Sepsis , Thorax
18.
Mycobiology ; : 158-166, 2014.
Article in English | WPRIM (Western Pacific) | ID: wpr-729230

ABSTRACT

In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.


Subject(s)
Ammonia , Cellulase , Crowns , Fusarium , Genes, rRNA , Hydrogen Cyanide , Solanum lycopersicum , Paenibacillus , Plants , Plasmodiophorida , Siderophores , Soil
19.
Rev. argent. microbiol ; 36(1): 52-55, Jan.-Mar. 2004. ilus
Article in English | LILACS | ID: lil-634459

ABSTRACT

The fungus Ascosphaera apis, the causative agent of chalkbrood disease in honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of 249 aerobic spore-forming bacterial antagonists isolated from honey samples was evaluated. Each isolate was screened against A. apis by a central disk test assay. Ten bacterial strains that showed the best antagonistic effect to A. apis were selected for further study and identified as Bacillus cereus (m363, mv86, mv81, mv75), Bacillus circulans (Fr231, m448b), Bacillus megaterium (m435), Bacillus pumilus (m354), Bacillus subtilis (m329), and Paenibacillus alvei (m321). For testing the efficiency of the selected strains, a paired culture test was used with 5 replicates of each combination bacterial antagonist / A. apis strain, and 5 replications for each control on 4 different culture media. The analysis of variance and posterior comparison of means according to LSD method showed that the best antagonists when using YGPSA medium were B. subtilis (m329) and B. megaterium (m435), and in the case of MYPGP medium the most efficient were B. circulans strains Fr 231 and m448b.


La cría yesificada es una micosis invasiva ocasionada por el hongo heterotálico Ascosphaera apis que afecta exclusivamente a las larvas de las abejas. La enfermedad tiene difusión mundial y en la Argentina se halla diseminada en todas las áreas donde se realiza apicultura. Se estudió la potencialidad de 249 cepas de bacterias esporuladas aeróbicas aisladas de miel como agentes biocontroladores del hongo mediante un ensayo en disco central en condiciones de laboratorio. Se seleccionaron como mejores antagonistas 10 cepas bacterianas identificadas como Bacillus cereus (m363, mv86, mv81, mv75), Bacillus circulans (Fr231, m448b), Bacillus megaterium (m435), Bacillus pumilus (m354), Bacillus subtilis (m329), y Paenibacillus alvei (m321). Para probar la eficiencia de las cepas seleccionadas, se empleó la técnica de cultivo dual con 5 repeticiones de cada combinación antagonista bacteriano / cepa de A. apis, 5 para cada control y 4 medios de cultivo diferentes empleando 10 cepas del hongo de distintos orígenes geográficos. El análisis de la variancia y posterior comparación de medias LSD (Least Square Dfferences) mostró que los mejores antagonistas fueron B. subtilis (m329) y B. megaterium (m435) para el caso del medio YGPSA, mientras que para MYPGP las más eficientes fueron las cepas de B. circulans Fr 231 y m448b.


Subject(s)
Animals , Ascomycota/growth & development , Bacillus/physiology , Bees/microbiology , Gram-Positive Bacteria/physiology , Honey/microbiology , Pest Control, Biological , Bacillus cereus/physiology , Bacillus megaterium/physiology , Bees/growth & development , Larva/microbiology , Mycology/methods , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL