Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
1.
Front Nutr ; 11: 1362550, 2024.
Article in English | MEDLINE | ID: mdl-38966418

ABSTRACT

Background: Maintaining a normal range of muscle mass and function is crucial not only for sustaining a healthy life but also for preventing various disorders. Numerous nutritional or natural resources are being explored for their potential muscle hypertrophic properties. Aim: We aimed to evaluate the muscle hypertrophic effects of APX, a 1:1 mixture of Astragalus membranaceus and Paeonia japonica. In addition to the myotube differentiation cell assay, we utilized a weighted exercise-based animal model and evaluated changes in muscle hypertrophy using dual-energy X-ray absorptiometry (DXA) and histological analysis. Results: The 8-week treadmill exercise led to notable decreases in body weight and fat mass but an increase in muscle mass compared to the control group. Administration of APX significantly accelerated muscle mass gain (p < 0.05) without altering body weight or fat mass compared to the exercise-only group. This muscle hypertrophic effect of APX was consistent with the histologic size of muscle fibers in the gastrocnemius (p > 0.05) and rectus femoris (p < 0.05), as well as the regulation of myogenic transcription factors (MyoD and myogenin), respectively. Furthermore, APX demonstrated a similar action to insulin-like growth factor 1, influencing the proliferation of C2C12 myoblast cells (p < 0.01) and their differentiation into myotubes (p < 0.05) compared to the control group. Conclusion: The present study provides experimental evidence that APX has muscle hypertrophic effects, and its underlying mechanisms would involve the modulation of MyoD and myogenin.

2.
Plant J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975960

ABSTRACT

Drought is a detrimental environmental factor that restricts plant growth and threatens food security throughout the world. WRKY transcription factors play vital roles in abiotic stress response. However, the roles of IIe subgroup members from WRKY transcription factor family in soluble sugar mediated drought response are largely elusive. In this study, we identified a drought-responsive IIe subgroup WRKY transcription factor, PoWRKY69, from Paeonia ostii. PoWRKY69 functioned as a positive regulator in response to drought stress with nucleus expression and transcriptional activation activity. Silencing of PoWRKY69 increased plants sensitivity to drought stress, whereas conversely, overexpression of PoWRKY69 enhanced drought tolerance in plants. As revealed by yeast one-hybrid, electrophoretic mobility shift assay, and luciferase reporter assays, PoWRKY69 could directly bind to the W-box element of fructose-1,6-bisphosphate aldolase 5 (PoFBA5) promoter, contributing to a cascade regulatory network to activate PoFBA5 expression. Furthermore, virus-induced gene silencing and overexpression assays demonstrated that PoFBA5 functioned positively in response to drought stress by accumulating fructose to alleviate membrane lipid peroxidation and activate antioxidant defense system, these changes resulted in reactive oxygen species scavenging. According to yeast two-hybrid, bimolecular fluorescence complementation, and firefly luciferase complementation imaging assays, valine-glutamine 11 (PoVQ11) physically interacted with PoWRKY69 and led to an enhanced activation of PoWRKY69 on PoFBA5 promoter activity. This study broadens our understanding of WRKY69-VQ11 module regulated fructose accumulation in response to drought stress and provides feasible molecular measures to create novel drought-tolerant germplasm of P. ostii.

3.
Mitochondrial DNA B Resour ; 9(6): 818-822, 2024.
Article in English | MEDLINE | ID: mdl-38919813

ABSTRACT

The first registered Paeonia Itoh hybrid cv. Hexie in China is a naturally occurring intersectional hybrid of Sect. Paeonia and Sect. Moutan. In this study, we sequenced, assembled, and analyzed the complete chloroplast genome of Paeonia Itoh hybrid cv. Hexie. The result showed that the chloroplast genome of Hexie, with a typical circular tetrad structure, is 152,958 bp in length, comprising a large single copy (LSC) region of 84,613 bp, a small single copy (SSC) region of 17,051 bp, and two reverse complementary sequences (IRs) of 25,647 bp. The chloroplast genome encoded 116 genes, including 80 protein-coding genes, 32 tRNA genes, and 4 rRNA genes. Phylogenetic analysis inferred from the shared protein-coding genes showed that the Paeonia Itoh hybrid cv. Hexie had the closest phylogenetic relationship with P. suffruticosa, followed by P. ostii, indicating that P. suffruticosa was its maternal parent. This study provides a molecular resource for phylogenetic and maternal parent studies of Paeonia Itoh hybrid, contributing to a basis for Paeonia Itoh hybrid breeding strategies in the future.

4.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877407

ABSTRACT

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Subject(s)
Paeonia , Seeds , Transcriptome , Triglycerides , Paeonia/genetics , Paeonia/metabolism , Paeonia/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Triglycerides/biosynthesis , Phylogeny , Gene Expression Regulation, Plant , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipid Metabolism/genetics
5.
J Cosmet Dermatol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864461

ABSTRACT

BACKGROUND: In vitro single-cell experiments may yield inconsistent results compared to clinical trials. To enhance the reliability of cosmetic active ingredient screening, a coculture model of B16F10-HaCaT cells was established in vitro based on the structural characteristics of human skin, thereby improving the credibility of experimental outcomes. Currently, most cosmetic whitening additives primarily target simple efficacy goals such as inhibiting tyrosinase activity or melanin transfer. Therefore, investigating novel and efficient whitening additives has become a prominent research focus. OBJECTIVES: The aim is to establish an in vitro cell coculture model for more reliable experimental results and investigate the mechanism by which Paeonia lactiflora Pall seeds oil inhibits melanin production and transfer. METHODS: The impact of different concentrations of Paeonia lactiflora Pall seeds oil on cocultured cell proliferation rate was assessed using cck8 assay. Tyrosinase inhibition ability in cocultured cells was tested using levodopa as a substrate. Melanin production inhibition ability in coculture cells was evaluated by lysing cells with sodium hydroxide. The effect of Paeonia lactiflora Pall seeds oil on dendrite-related gene expression levels was examined through qPCR analysis. Additionally, Western blotting was employed to study the effect of Paeonia lactiflora Pall seeds oil on dendrite-related protein expression levels. RESULTS: Different concentrations of Paeonia lactiflora Pall seeds oil did not affect the proliferation activity of cocultured cells. A specific concentration of α-MSH increased cell tyrosinase activity, cellular melanin content, as well as Rac1, Cdc42, and PAR-2 gene and protein expression related to dendritic formation. Treatment with a certain concentration of Paeonia lactiflora Pall seeds oil resulted in decreased tyrosinase activity and melanin content in cells along with downregulated expression levels of Rac1, Cdc42, and PAR-2 genes and proteins associated with dendritic formation. CONCLUSIONS: Paeonia lactiflora Pall seeds oil at specific concentrations exhibits the ability to inhibit tyrosinase activity, decrease melanin content, and possesses the potential to impede melanin transfer.

6.
J Pharm Biomed Anal ; 245: 116184, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692214

ABSTRACT

The plant of Paeonia lactiflora Pall. belongs to Ranunculaceae, and its root can be divided into two categories according to different processing methods, which included that one was directly dried without peeling the root of the P. lactiflora (PR), and the other was peeled the root of the P. lactiflora (PPR) after boiled and dried. To evaluate the difference of chemical components, UPLC-ESI-Q-Exactive Focus-MS/MS and UPLC-QQQ-MS were applied. The distribution of chemical components in different tissues was located by laser microdissection (LMD), especially the different ingredients. A total of 86 compounds were identified from PR and PPR. Four kind of tissues were isolated from the fresh root of the P. lactiflora (FPR), and 54 compounds were identified. Especially the content of gallic acid, albiflorin, and paeoniflorin with high biological activities were the highest in the cork, but they were lower in PR than that in PPR, which probably related to the process. To illustrate the difference in pharmacological effects of PR and PPR, the tonifying blood and analgesic effects on mice were investigated, and it was found that the tonifying blood and analgesic effects of PPR was superior to that of PR, even though PR had more constituents. The material basis for tonifying blood and analgesic effect of the root of P. lactiflora is likely to be associated with an increase in constituents such as paeoniflorin and paeoniflorin lactone after boiled and peeled. The study was likely to provide some theoretical support for the standard and clinical application.


Subject(s)
Glucosides , Monoterpenes , Paeonia , Plant Roots , Tandem Mass Spectrometry , Paeonia/chemistry , Plant Roots/chemistry , Animals , Mice , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Glucosides/analysis , Glucosides/chemistry , Male , Monoterpenes/pharmacology , Monoterpenes/analysis , Monoterpenes/chemistry , Microdissection/methods , Gallic Acid/analysis , Gallic Acid/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lasers , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods , Liquid Chromatography-Mass Spectrometry , Bridged-Ring Compounds
7.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791503

ABSTRACT

Paeonia ostii is an important economic oil and medicinal crop. Its anthers are often used to make tea in China with beneficial effects on human health. However, the metabolite profiles, as well as potential biological activities of P. ostii anthers and the pollen within anthers have not been systematically analyzed, which hinders the improvement of P. ostii utilization. With comprehensive untargeted metabolomic analysis using UPLC-QTOF-MS, we identified a total of 105 metabolites in anthers and pollen, mainly including phenylpropanoids, polyketides, organic acids, benzenoids, lipids, and organic oxygen compounds. Multivariate statistical analysis revealed the metabolite differences between anthers and pollen, with higher carbohydrates and flavonoids content in pollen and higher phenolic content in anthers. Meanwhile, both anthers and pollen extracts exhibited antioxidant activity, antibacterial activity, α-glucosidase and α-amylase inhibitory activity. In general, the anther stage of S4 showed the highest biological activity among all samples. This study illuminated the metabolites and biological activities of anthers and pollen of P. ostii, which supports the further utilization of them.


Subject(s)
Metabolomics , Paeonia , Pollen , Pollen/metabolism , Pollen/chemistry , Paeonia/metabolism , Paeonia/chemistry , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Antioxidants/metabolism , Metabolome , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flowers/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Mass Spectrometry/methods
8.
Neurología (Barc., Ed. impr.) ; 39(4): 329-339, May. 2024. ilus, tab, graf
Article in English | IBECS | ID: ibc-232515

ABSTRACT

Introduction: In the present study, anticonvulsant effects of aqueous extract (AE), hydro-alcoholic crude extract (HE), and its fractions (F-CHCl3, F-EtOAc, F-MeOH) of Paeonia daurica subsp. macrophylla (P. daurica ssp. macrophylla) root examined by using a pentylenetetrazol-induced model (PTZ) on mice. Methods: HE and its fractions as well as AE, in concentrations of (100, 200 and 400 mg/kg), valproate (Val) (100 and 200 mg/kg), and saline (negative control) (10 mg/kg) were injected intraperitoneally (i.p.) 30 min before PTZ (80 mg/kg, i.p.). The time taken before the onset of myoclonic convulsions (MC), MC duration, time taken before the onset of generalized tonic-clonic seizures (GTCS), the duration of GTCS, and the percentage of GTCS and mortality protection recorded. The plant's anticonvulsant mechanisms were assessed using flumazenil (5 mg/kg, i.p.) before AE (100, 200, and 400 mg/kg, i.p.) injection. GraphPad Prism software was used to compare the differences between various treatment groups with one-way analysis of variance (ANOVA) followed by Tukey–Krammer multiple comparison tests. Results: All the plant samples except F-EtOAc significantly delayed the onset and decreased the duration of PTZ-induced MCS and GTCS, and significantly reduced the GTCS and mortality rate. Pretreatment with flumazenil diminished the significant anticonvulsant effects of AE against PTZ-induced seizures. Conclusions: It can report that extract of P. daurica ssp. macrophylla might be a helpful guide for future studies in the treatment of epilepsy.(AU)


Introducción: Epilepsia es el término usado para un grupo de trastornos caracterizado por las convulsiones espontáneas recurrentes. Un estudio enfocado en los productos naturales de los recursos tradicionales ofrece ventajas significativas que se están utilizando de manera más amplia en modelos animales de epilepsia y candidatos a mayor desarrollo clínico y sus fracciones (F-CHCl3, F-EtOAc, F-MeOH) de Paeonia daurica subsp. macrophylla (P. daurica ssp. macrophylla) raíz examinada utilizando un modelo inducido por pentilentetrazol (PTZ) en ratones. Métodos: La maceración dinámica utilizada para extraer HE de la planta y técnica de cromatografía en columna de sílice utilizada para obtener F-CHCl3, F-EtOAc, así como fracciones de F-MeOH. La extracción de raíces secas se utilizó con agua destilada y se provocó AE. Las muestras de plantas (100, 200 y 400 mg/kg), valproato (Val) (100 y 200 mg/kg) y suero (control negativo) se inyectaron por vía intraperitoneal (ip) 30 min antes de PTZ (80 mg/kg, ip). El tiempo transcurrido antes del comienzo de convulsiones mioclónicas (MC), duración de las MC, tiempo transcurrido antes del comienzo de convulsiones tónico-clónicas generalizadas (GTCS), la duración de GTCS, así como el porcentaje de GTCS y protección contra la mortalidad registrada. Los mecanismos anticonvulsivos de planta fueron evaluados mediante el uso de flumazenil (5 mg/kg, ip) antes de AE (100, 200 y 400 mg/kg, ip) inyección. Se utilizaba el software GraphPad Prism® comparando las diferencias entre varios grupos de tratamiento con un análisis unilateral de variación (ANOVA) seguido por las pruebas de comparación múltiple de Tukey's Krammer. Resultados: Todas las muestras de plantas, excepto F-EtOAc, retrasaron de manera considerable el inicio, y disminuyeron la duración de PTZ inducidos por MCS y GTCS, y redujo significativamente el GTCS, así como la tasa de mortalidad...(AU)


Subject(s)
Animals , Anticonvulsants , Seizures , Epilepsy/drug therapy , Flumazenil/therapeutic use , Receptors, GABA , Paeonia , Neurology , Nervous System Diseases , Models, Animal
9.
Neurologia (Engl Ed) ; 39(4): 329-339, 2024 May.
Article in English | MEDLINE | ID: mdl-38616060

ABSTRACT

INTRODUCTION: In the present study, anticonvulsant effects of aqueous extract (AE), hydro-alcoholic crude extract (HE), and its fractions (F-CHCl3, F-EtOAc, F-MeOH) of Paeonia daurica subsp. macrophylla (P. daurica ssp. macrophylla) root examined by using a pentylenetetrazol-induced model (PTZ) on mice. METHODS: HE and its fractions as well as AE, in concentrations of (100, 200 and 400mg/kg), valproate (Val) (100 and 200mg/kg), and saline (negative control) (10mg/kg) were injected intraperitoneally (i.p.) 30min before PTZ (80mg/kg, i.p.). The time taken before the onset of myoclonic convulsions (MC), MC duration, time taken before the onset of generalized tonic-clonic seizures (GTCS), the duration of GTCS, and the percentage of GTCS and mortality protection recorded. The plant's anticonvulsant mechanisms were assessed using flumazenil (5mg/kg, i.p.) before AE (100, 200, and 400mg/kg, i.p.) injection. GraphPad Prism software was used to compare the differences between various treatment groups with one-way analysis of variance (ANOVA) followed by Tukey-Krammer multiple comparison tests. RESULTS: All the plant samples except F-EtOAc significantly delayed the onset and decreased the duration of PTZ-induced MCS and GTCS, and significantly reduced the GTCS and mortality rate. Pretreatment with flumazenil diminished the significant anticonvulsant effects of AE against PTZ-induced seizures. CONCLUSIONS: It can report that extract of P. daurica ssp. macrophylla might be a helpful guide for future studies in the treatment of epilepsy.


Subject(s)
Anticonvulsants , Paeonia , Animals , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Pentylenetetrazole/toxicity , Flumazenil , Seizures/chemically induced , Seizures/drug therapy
10.
Nat Prod Res ; : 1-8, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613326

ABSTRACT

In the present study, the chemical composition of the essential oil from aerial parts of two populations of Paeonia mascula subsp. russoi, collected in Sicily, was evaluated by GC-MS. No previously phytochemical investigation has been reported for this subspecies. The main components of the essential oil of the population with pink flowers were salicylaldehyde (34.31%), nonanal (16.95%) and 2-hexenal (10.17%), whereas essential oil of the population with white flowers, was shown to be rich of myrtanal (14.14%), eugenol (14.02%) and salicylaldehyde (12.21%). Furthermore, a complete literature review, not present in literature, on the composition of the essential oils of all the other taxa of Paeonia, studied so far, was performed. PCA and HCA analyses of the composition of essential oils obtained from the aerial parts were also carried out.

11.
Fitoterapia ; 176: 105981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685513

ABSTRACT

An investigation of EtOAc extract from the roots of Paeonia lactiflora yielded three new 30-noroleanane triterpenoids paeonenoides L-N (1-3) and one new oleanane triterpenoid paeonenoide O (4) together with 7 known compounds (5-11). Extensive spectrographic experiments were applied to identify the structures of 1-4, and their absolute configurations were unambiguously determined by theoretical calculations of ECD spectra, as well as the single-crystal X-ray diffraction analysis. Compounds 8, 9 and 10 were isolated from the Paeonia genus for the first time. Moreover, compounds 8, 9 and 11 showed inhibitory activities against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages with the IC50 values of 72. 17 ± 4.74, 30.02 ± 2.03 and 28.34 ± 1.85 µM, respectively.


Subject(s)
Nitric Oxide , Oleanolic Acid , Paeonia , Phytochemicals , Plant Roots , Plant Roots/chemistry , Paeonia/chemistry , Mice , Animals , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/isolation & purification , Oleanolic Acid/chemistry , RAW 264.7 Cells , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Triterpenes/pharmacology , Triterpenes/isolation & purification , Triterpenes/chemistry , China , Macrophages/drug effects
12.
Heliyon ; 10(7): e28450, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560231

ABSTRACT

Fermentation is an effective means of enhancing the nutritional value of natural medicines, however, it is unclear how the metabolites changed during the fermentation of Paeonia lactiflora root (PLR). This study intends to elucidate how the active constituents and antioxidant activity of PLR change during fermentation. The study examined the levels of total glucosides of paeony (TGP), total flavonoids content (TFC), total phenols content (TPC), and antioxidant capability by high performance liquid chromatography (HPLC) and spectrophotometry. The chemical compositions before and after PLR fermentation were compared utilizing ultra-high performance liquid chromatography-mass spectrometry (UHPLC - MS). The findings from this study indicate that TGP, TFC and TPC peaked at Day 2 of fermentation, and the antioxidant capacity increased after fermentation. Of the 109 detected compounds, 18 were discrepant compounds. In summary, fermentation is an essential strategy for enhancing the functional activity of PLR. The current study could establish a scientific basis for future research on the fermentation of PLR, and provides new insights into the influence of fermentation on chemical composition as well as the antioxidant activity of drugs.

13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673996

ABSTRACT

Gene function verification is a crucial step in studying the molecular mechanisms regulating various plant life activities. However, a stable and efficient homologous genetic transgenic system for herbaceous peonies has not been established. In this study, using virus-induced gene silencing technology (VIGS), a highly efficient homologous transient verification system with distinctive advantages was proposed, which not only achieves true "intact-plant" infiltration but also minimizes the operation. One-year-old roots of the representative species, Paeonia lactiflora Pall., were used as the materials; prechilling (4 °C) treatment for 3-5 weeks was applied as a critical precondition for P. lactiflora to acquire a certain chilling accumulation. A dormancy-related gene named HOMEOBOX PROTEIN 31 (PlHB31), believed to negatively regulate bud endodormancy release (BER), was chosen as the target gene in this study. GFP fluorescence was detected in directly infiltrated and newly developed roots and buds; the transgenic plantlets exhibited remarkably earlier budbreak, and PlHB31 was significantly downregulated in silenced plantlets. This study established a homologous transient silencing system featuring intact-plant infiltration and minimized manipulation for gene function research, and also offers technical support and serves as a theoretical basis for gene function discovery in numerous other geophytes.


Subject(s)
Gene Expression Regulation, Plant , Gene Silencing , Plant Roots , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Plant Roots/genetics , Plant Roots/growth & development , Paeonia/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
14.
Regul Toxicol Pharmacol ; 149: 105620, 2024 May.
Article in English | MEDLINE | ID: mdl-38615840

ABSTRACT

Botanical extracts, widely used in cosmetics, pose a challenge to safety assessment due to their complex compositions. The threshold of toxicological concern (TTC) approach, offering a safe exposure level for cosmetic ingredients, proves to be a promising solution for ensuring the safety of cosmetic ingredients with low exposure level. We assessed the safety of Paeonia lactiflora root extract (PLR), commonly used in skin conditioning products, with the TTC. We identified 50 constituents of PLR extract from the USDA database and literature exploration. Concentration of each constituent of PLR extract was determined with the information from USDA references, literature, and experimental analysis. The genotoxicity of PLR and its constituents was assessed in vitro and in silico respectively. Cramer class of the constituents of the PLR extract was determined with Toxtree 3.1 extended decision tree using ChemTunes®. Systemic exposure of each constituent from leave-on type cosmetic products containing PLR at a 1% concentration was estimated and compared with respective TTC threshold. Two constituents exceeding TTC threshold were further analyzed for dermal absorption using in silico tools, which confirmed the safety of PLR extract in cosmetics. Collectively, we demonstrated that the TTC is a useful tool for assessing botanical extract safety in cosmetics.


Subject(s)
Cosmetics , Paeonia , Plant Extracts , Plant Roots , Paeonia/chemistry , Plant Extracts/toxicity , Cosmetics/toxicity , Plant Roots/chemistry , Risk Assessment , Humans , Animals , Consumer Product Safety , Skin Absorption , No-Observed-Adverse-Effect Level
15.
Nat Prod Res ; : 1-7, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433399

ABSTRACT

Two new glycosides, ethyl-O-ß-D-furanosyl-(1→6)-O-ß-D-glucopyranoside (1) and (5-'')-galloyl-ethyl-O-ß-D-furanosyl-(1→6)-O-ß-D-glucopyranoside (2), together with eight known compounds (3-10) were obtained from the n-BuOH extraction of Paeonia ostii. Their structures were identified via the extensive spectroscopic analysis. Compounds 1, 3-10 exhibited the anti-inflammation activities, which inhibited the production of NO, TNF-α and IL-1ß in LPS-induced RAW264.7 cells with IC50 values ranging from 6.00 to 86.78 µΜ.

16.
Phytomedicine ; 127: 155483, 2024 May.
Article in English | MEDLINE | ID: mdl-38432036

ABSTRACT

BACKGROUND: Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE: MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS: Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS: Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.


Subject(s)
Drugs, Chinese Herbal , Glucosides , Paeonia , Glycosides/pharmacology , Paeonia/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Anti-Inflammatory Agents
17.
Molecules ; 29(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38474505

ABSTRACT

BACKGROUND: Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the "peeling" process, which involves removing the cork and a portion of the phloem. PLP's biological function is strongly linked to its secondary metabolites, and the distribution of metabolites in different regions of the PLP rhizome causes changes in efficacy when PLP is processed into various therapeutic compounds. METHODS: The metabolites of the cork (cor), phloem (phl), and xylem (xyl) were examined in the roots of PLP using a metabolomics approach based on UPLC-Q-Exactive-Orbitrap-MS/MS (UPLC-MS/MS), and the differential metabolites were evaluated using multivariate analysis. RESULTS: Significant changes were observed among the cor, phl, and xyl samples. In both positive and negative ion modes, a total of 15,429 peaks were detected and 7366 metabolites were identified. A total of 525 cor-phl differential metabolites, 452 cor-xyl differential metabolites, and 328 phl-xyl differential metabolites were evaluated. Flavonoids, monoterpene glycosides, fatty acids, sugar derivatives, and carbohydrates were among the top 50 dissimilar chemicals. The key divergent metabolic pathways include linoleic acid metabolism, galactose metabolism, ABC transporters, arginine biosynthesis, and flavonoid biosynthesis. CONCLUSION: The cor, phl, and xyl of PLP roots exhibit significantly different metabolite types and metabolic pathways; therefore, "peeling" may impact the pharmaceutical effect of PLP. This study represents the first metabolomics analysis of the PLP rhizome, laying the groundwork for the isolation and identification of PLP pharmacological activity, as well as the quality evaluation and efficacy exploration of PLP.


Subject(s)
Drugs, Chinese Herbal , Paeonia , Chromatography, Liquid , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Paeonia/chemistry , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Metabolomics
18.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Article in English | MEDLINE | ID: mdl-38450923

ABSTRACT

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Subject(s)
Cell Proliferation , Collagenases , Hyaluronoglucosaminidase , Melanins , Paeonia , Pancreatic Elastase , Plant Oils , Seeds , Paeonia/chemistry , Seeds/chemistry , Animals , Mice , Melanins/analysis , Pancreatic Elastase/metabolism , Plant Oils/pharmacology , Cell Proliferation/drug effects , Collagenases/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/analysis , Cosmetics/chemistry , Cosmetics/pharmacology , Melanoma, Experimental/drug therapy , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/analysis , Chorioallantoic Membrane/drug effects , Cell Line, Tumor , Chickens
19.
Cryobiology ; 115: 104867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387753

ABSTRACT

Pollen, as the male gametophyte, carries half of plant genetic information and is an important source of germplasm. The cryopreservation of pollen can not only preserve germplasm, but also solve the problem of time and space barrier in crossbreeding. So it is of great significance to explore the mechanism of pollen viability maintenance after cryopreservation. In this paper, 10 cultivars of Paeonia lactiflora with different fresh pollen viability that did not change after cryopreservation were taken as objects and the effects of pollen inclusions such as soluble sugar, starch, soluble protein, free amino acids, and proline were explored. The results showed that: (1) The contents of pollen inclusions in the fresh pollen of 10 cultivars were different. After cryopreservation, the contents of starch and free amino acids significantly decreased in 10 cultivars, and the soluble sugar, soluble protein, and proline varied with cultivars. (2) Correlation analysis showed that fresh pollen viability was significantly positively correlated with the soluble sugar (R-values of 0.630) and starch content (R-values of 0.694) in fresh pollen. But after cryopreservation pollen viability was only significantly positively correlated with the starch content (R-values of 0.725). These results suggest that the effects of pollen inclusions on pollen vitality are different before and after cryopreservation. The fresh pollen with higher soluble sugar and starch is more vital. But after cryopreservation, the pollen with high starch content has higher viability. The maintenance of stable pollen viability after cryopreservation appears to be related to starch content or starch metabolism, which requires further to study for a final determination.


Subject(s)
Cryopreservation , Paeonia , Plant Proteins , Pollen , Proline , Starch , Cryopreservation/methods , Paeonia/physiology , Starch/metabolism , Proline/metabolism , Plant Proteins/metabolism , Amino Acids/metabolism , Cell Survival , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism
20.
Plants (Basel) ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337954

ABSTRACT

Tree peony (Paeonia suffruticosa) is a significant medicinal plant. However, the low rooting number is a bottleneck problem in the micropropagation protocols of P. ostii 'Fengdan'. The activity of superoxide dismutase (SOD) is closely related to root development. But research on the SOD gene's impact on rooting is still lacking. In this study, RNA sequencing (RNA-seq) was used to analyze the four crucial stages of root development in P. ostii 'Fengdan' seedlings, including the early root primordium formation stage (Gmfq), root primordium formation stage (Gmf), root protrusion stage (Gtq), and root outgrowth stage (Gzc). A total of 141.77 GB of data were obtained; 71,718, 29,804, and 24,712 differentially expressed genes (DEGs) were identified in the comparison groups of Gmfq vs. Gmf, Gmf vs. Gtq, and Gtq vs. Gzc, respectively. Among the 20 most highly expressed DEGs in the three comparison groups, only the CuZnSOD gene (SUB13202229, PoSOD) was found to be significantly expressed in Gtq vs. Gzc. The overexpression of PoSOD increased the number of adventitious roots and promoted the activities of peroxidase (POD) and SOD in P. ostii 'Fengdan'. The gene ADVENTITIOUS ROOTING RELATED OXYGENASE1 (PoARRO-1), which is closely associated with the development of adventitious roots, was also significantly upregulated in overexpressing PoSOD plants. Furthermore, PoSOD interacted with PoARRO-1 in yeast two-hybrid (Y2H) and biomolecular luminescence complementation (BiFC) assays. In conclusion, PoSOD could interact with PoARRO-1 and enhance the root development of tube plantlets in P. ostii 'Fengdan'. This study will help us to preliminarily understand the molecular mechanism of adventitious root formation and improve the root quality of tree peony and other medicinal plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...