Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Article in English | MEDLINE | ID: mdl-38884729

ABSTRACT

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Subject(s)
Heart Septal Defects, Ventricular , Humans , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Heart Septal Defects, Ventricular/genetics , Mutation , Transcription Factors/genetics
2.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861385

ABSTRACT

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Subject(s)
Epigenesis, Genetic , Germ Cells , Seminoma , Testicular Neoplasms , Humans , Seminoma/genetics , Seminoma/pathology , Seminoma/metabolism , Male , Germ Cells/metabolism , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/metabolism , Transcription, Genetic , Gene Expression Regulation, Neoplastic , Transcriptome/genetics
3.
Childs Nerv Syst ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689102

ABSTRACT

Pallister-Killian syndrome (PKS; OMIM #601803) is a rare genetic disorder typically characterized by developmental delay, seizures, sparse temporal hair, and facial dysmorphisms. PKS is most frequently caused by mosaic supernumerary isochromosome 12p. Here, we report a 27-month-old girl with a prenatal diagnosis of PKS and a histopathological diagnosis of pineocytoma.

4.
Front Genet ; 15: 1331066, 2024.
Article in English | MEDLINE | ID: mdl-38528911

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare inherited disease with multiple congenital anomalies, profound intellectual disability, and the presence in the karyotype of sSMC - i(12)(p10). The frequency of PKS may be underestimated due to problems with cytogenetic diagnosis caused by tissue-specific mosaicism and usually a low percentage of peripheral blood cells containing sSMC. Such tissue-specific mosaicism also complicates a detailed analysis of the sSMC, which, along with the assessment of mosaicism in different tissues, is an important part of cytogenetic diagnosis in PKS. Unfortunately, a full-fledged diagnosis in PKS is either practically impossible or complicated. On the one hand, this is due to problems with the biopsy of various tissues (skin biopsy with fibroblast culture is most often used in practice); on the other - a low percentage of dividing peripheral blood cells containing sSMC, which often significantly complicates the analysis of its composition and organization. In the present study, a detailed analysis of sSMC was carried out in a patient with a characteristic clinical picture of PKS. A relatively high percentage of peripheral blood cells with sSMC (50%) made it possible to perform a detailed molecular cytogenetic analysis of de novo sSMC using chromosomal in situ suppression hybridization (CISS-hybridization), multicolor FISH (mFISH), multicolor chromosome banding (MCB), array CGH (aCGH), and quantitative real-time PCR (qPCR), and short tandem repeat (STR) - analysis. As a result, it was found that the sSMC is not a typical PKS derivative of chromosome 12. In contrast to the classical i(12)(p10) for PKS, the patient's cells contained an acrocentric chromosome consisting of 12p material. Clusters of telomeric repeats were found at the both ends of the sSMC. Furthemore, the results of aCGH and qPCR indicate the presence of interstitial 8.9 Mb duplication at 12p13.1-p12.1 within the sSMC, which leads to different representations of DNA from different segments of 12p within cells containing sSMC. The obtained data raise the question of the instability of the sSMC and, as a consequence, the possible presence of additional rearrangements, which, in traditional cytogenetic analysis of patients with PKS, are usually described as i(12)(p10).

5.
Mol Syndromol ; 14(4): 303-309, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37589028

ABSTRACT

Background: Pallister-Killian syndrome (PKS) is typically recognized by its features that include developmental delay, seizures, sparse temporal hair, and facial dysmorphisms. PKS is most frequently caused by mosaic supernumerary isochromosome 12p. Case Presentation: Here, we report a patient with PKS who was subsequently diagnosed with Burkitt lymphoma. Following the successful treatment of lymphoma, this patient demonstrated very mild intellectual disability despite the diagnosis of PKS, which is usually associated with severe developmental delay. Discussion: This is the first reported patient with PKS and a hematologic malignancy. Although there is no significant reported association of tetrasomy 12p with cancer, the co-occurrence of two rare findings in this patient suggests a potential relationship. The localization of AICDA, a gene for which overexpression has been implicated in promoting t(8;14) noted in our patient's lymphoma, raises a potential mechanism of pathogenesis. In addition, this case indicates that children with PKS can demonstrate near-normal cognitive development.

6.
Cureus ; 15(11): e49644, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38161893

ABSTRACT

Recent advancements in genetic testing have revealed cases of mosaicism, demonstrating the phenomenon may be more common than once thought. Broadly defined, mosaicism describes the presence of two genotypically different cell lineages within the same organism. This can arise from small mutations or errors in chromosome segregation, as early as in gametes, before or after fertilization. Mosaicism is directly responsible for many conditions that present in a wide range of tissues, with the presence of the mutation or genetic abnormality following a tissue-dependent pattern. This makes it possible for patients to test negative for a condition using a standard tissue sample while harboring the variant in a different tissue. Understanding the timing and mechanisms of mosaic conditions will aid in targeted testing that is more appropriate to identify a pathogenic variant. This targeted testing should reduce the length of a patient's diagnostic odyssey and provide a better understanding of the chances of passing on their variant to their offspring, thereby allowing for more accurate genetic counseling. We illustrate this phenomenon with two cases: one of Pallister-Killian syndrome and the other of tuberous sclerosis complex. Both patients had increased time to diagnosis because of difficulties in identifying genetic variants in tested tissues. Beyond just increased time to diagnosis, we illustrate that mosaic conditions can present as less severe and more variable than the germline condition and how specific germ layers may be affected by the variant. Knowing which germ layers may be affected by the variant can give clinicians a clue as to which tissues may need to be tested to yield the most accurate result.

7.
HRB Open Res ; 5: 14, 2022.
Article in English | MEDLINE | ID: mdl-36249954

ABSTRACT

Pallister Killian Syndrome (PKS) is a rare genetic disorder caused by a mosaic tetrasomy of the short arm of chromosome 12. The syndrome is characterised by typical craniofacial dysmorphism, congenital anomalies and intellectual disability. Epilepsy is a known complication, with onset usually occurring in early childhood and characterised most commonly by spasms and myoclonic seizures. To the best of our knowledge, there have been no cases describing the early neonatal EEG in PKS and  electrographic seizures, to date. Here, we report two cases of PKS presenting in the neonatal period with distinctive EEG features and seizures.

8.
Cureus ; 14(3): e23095, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35464544

ABSTRACT

We present the case of a two-week-old infant with congenital diaphragmatic hernia (CDH) and Pallister-Killian mosaic syndrome (PKS) for CDH repair. We discuss the pathophysiologic findings of both conditions and the resulting anesthetic challenges from their interplay.

9.
Front Pediatr ; 10: 817133, 2022.
Article in English | MEDLINE | ID: mdl-35372156

ABSTRACT

Pallister-Killian syndrome is an uncommon genetic disorder that has broad developmental and multisystemic effects. While medical complications are widely reported throughout the literature, research on the neurodevelopmental profile has been limited. Case reports make up the majority of the few existing studies regarding the neurodevelopmental phenotype associated with this disorder. The current case report describes a 3-year-old male with Pallister-Killian syndrome (AF), reports the neurodevelopmental evaluation of his unaffected twin brother (MF), and outlines the results of an optical imaging study on both boys. AF presents with severe developmental delays, however, he ambulates with support and engages in conversation using his communication device. Most severely impaired was AF's speech and expressive language, with childhood apraxia of speech (CAS) as a possible explanation for these severe deficits. MF, the sibling, demonstrated neurotypical abilities and often advanced scores for his age. Both subjects completed a functional near-infrared spectroscopy (fNIRS) study, revealing decreased temporal and frontal lobe function in AF and typical functioning in MF. This case report expands on the existing literature on PKS by describing variances in fraternal twin presentation and novel reporting on fNIRS findings in both boys.

10.
J Cell Mol Med ; 25(18): 8929-8935, 2021 09.
Article in English | MEDLINE | ID: mdl-34405543

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder usually caused by mosaicism of an extra isochromosome of 12p (i(12p)). This retrospective study analysed the prenatal ultrasound manifestations and molecular and cytogenetic results of five PKS foetuses. Samples of amniotic fluid and/or cord blood, skin biopsy and placenta were collected. Conventional karyotyping and single nucleotide polymorphism array (SNP array) were performed on all the amniotic fluid or cord blood samples. Copy number variants sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were also used for the validation for one foetus. All the five foetuses were from pregnancies with advanced parental age. Two foetuses involved structural abnormalities and one foetus had only soft markers, all of which included increased nuchal translucency. The rest two foetuses had normal ultrasounds in the second trimester, which has rarely been reported before. The karyotype revealed typical i(12p) in four cases and a small supernumerary marker chromosome consisting of 12p and 20p in the remaining one case. The proportion of cells with i(12p) ranged from 0 to 100% in cultural cells, while SNP array results suggested 2-4 copies of 12p. For one foetus, metaphase FISH showed normal results, but the interphase FISH suggested cell lines with two, three and four copies of 12p in the amniotic fluid. Advanced parental age may be an important risk factor for PKS, and there were no typical ultrasound manifestations related to PKS. A combination of karyotype analysis and molecular diagnosis is an effective method for the diagnosis of PKS.


Subject(s)
Chromosome Disorders/diagnosis , Fetus/abnormalities , Karyotyping/methods , Prenatal Diagnosis/methods , Adult , Chromosomes, Human, Pair 12 , Female , Humans , Pregnancy , Retrospective Studies
11.
Genes (Basel) ; 12(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073526

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare, sporadic disorder defined by a characteristic dysmorphic face, pigmentary skin anomalies, intellectual disability, hypotonia, and seizures caused by 12p tetrasomy due to an extra isochromosome 12p. We present three cases of PKS and two cases of trisomy 12p to illustrate and discuss features rarely cited in the literature, present certain particularities that not yet been cited, and analyze the differences between entities. Moreover, we present alternative methods of diagnosis that could be easily used in daily practice. Features not yet or rarely reported in PKS literature include marked excess of hair on the forehead and ears in the first months of life, a particular eye disorder (abnormal iris color with pointed pupil), connective tissue defects, repeated episodes of infection and autonomic dysfunction, endocrine malfunction as a possible cause of postnatal growth deficit, more complex sensory impairments, and mild early myoclonic jerks. After performing different combinations of tests, we conclude that MLPA (follow-up kit P230-B1) or array CGH using DNA extracted from a buccal swab is a reliable method of diagnosis in PKS and we recommend either one as a first intention diagnostic test. In cases without major defects associated (suspicion trisomy 12p), subtelomeric MLPA should be performed first.


Subject(s)
Chromosome Disorders/genetics , Phenotype , Trisomy/genetics , Adolescent , Child, Preschool , Chromosome Disorders/pathology , Chromosomes, Human, Pair 12/genetics , Diagnosis, Differential , Female , Genetic Testing/methods , Humans , Infant , Male , Trisomy/pathology
12.
Brain Dev ; 43(3): 448-453, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33229101

ABSTRACT

BACKGROUND: Pallister-Killian syndrome (PKS) is a rare disorder caused by the mosaic tetrasomy of chromosome 12p, and is characterized by facial dysmorphism, developmental delay, hypotonia and seizures. RESULTS: We report a patient with PKS showing unique polymicrogyria with calcification. He had delayed development and dysmorphic facial features including frontal bossing, hypertelorism, and high arched palate at 6 months of age. Neuroimaging revealed unilateral polymicrogyria with spot calcifications, which predominantly affected the right perisylvian region. Chromosome G-banding showed the karyotype 46,XY, however, array-based comparative genomic hybridization analysis showed mosaic duplication of chromosome 12p, in which CCND2, which encodes cyclin D2 and is a downstream mediator of PI3K-AKT pathway, is located. Supernumerary chromosome of 12p was detected in 58% of buccal mucosa cells by the interphase fluorescence in situ hybridization analysis using chromosome 12 centromere-specific D12Z3 probe. The diagnosis of PKS was made based on distinctive clinical features of our patient and the results of cytogenetic analyses. CONCLUSION: This report is, to our knowledge, the first case of a patient with PKS who clearly demonstrates polymicrogyria colocalized with calcifications, as shown by CT scans and MRI, and suggests that a patient with PKS could show structural brain anomalies with calcification. We assume that somatic mosaicism of tetrasomy could cause asymmetrical polymicrogyria in our patient, and speculate that increased dosages of CCND2 at chromosome 12p might be involved in the abnormal neuronal migration in PKS.


Subject(s)
Calcinosis/genetics , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Polymicrogyria/genetics , Brain Diseases/genetics , Brain Diseases/pathology , Chromosomes, Human, Pair 12/genetics , Comparative Genomic Hybridization , Humans , Infant , Male , Microarray Analysis
13.
Cureus ; 12(10): e11240, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33269168

ABSTRACT

A five-month-old male presented with an incidentally found low-lying conus medullaris on ultrasound and subsequent MRI demonstrating its position at L4. Pre-operative examination findings included mild, global hypotonia and a coccygeal dimple without bladder or bowel abnormalities or spasticity. The patient underwent spinal cord untethering with a section of filum terminale and was discharged without complication following his procedure. Follow-up at one year revealed continued baseline hypotonia without further neurosurgical needs. This is the first reported case of tethered cord syndrome described in a patient with Pallister-Killian syndrome managed successfully with neurosurgical intervention.

14.
Mol Syndromol ; 11(3): 125-129, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32903844

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare disorder presenting with developmental delay, numerous dysmorphic features, and skin pigmentation anomalies. It is caused by mosaic tetrasomy of the short arm of chromosome 12. In most instances, tetrasomy is due to a supernumerary isochromosome i(12)(p10). Although mitotic instability is a generally accepted behavior for supernumerary chromosomes, hexasomy 12p due to a gain of an isochromosome 12p, has been hardly ever reported. We report a 10 year follow-up on a girl with 2 copies of isochromosome consisting of the short arm of chromosome 12, who has craniofacial features seen in PKS, such as sparse hair with an unusual pattern, sparse eyebrows, lacrimal duct stenosis, submucous cleft palate, Pallister lip (a relatively long philtrum continuing into the vermillion border of the upper lip), narrow palate, and wide alveolar ridges. She also has other abnormalities, including unilateral renal dysgenesis, rectovaginal fistula, pre-axial polydactyly of the right hand, severe global developmental delay, and hypotonia as well as some features suggestive of mosaicism such as bilateral asymmetry, patchy areas of rough skin, and retinal mottling. Initial cytogenetic studies from peripheral blood showed a normal female karyotype. Further cytogenetic studies on a skin biopsy showed mosaicism with 2 copies of the supernumerary isochromosome 12p.

15.
J Pediatr Genet ; 9(3): 207-210, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32714624

ABSTRACT

Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder caused by a mosaic tetrasomy of chromosome 12p, which mainly manifests with craniofacial dysmorphism, intellectual disability (ID), auditory disturbance, epilepsy, and a variety of congenital malformations. The diagnosis of PKS can be complicated due to the phenotypic variation, and an overlap with other syndromes makes the molecular cytogenetic test necessary for a correct diagnosis. We identified two unrelated patients with typical facial features of PKS, including bitemporal alopecia, hypertelorism, and abnormal ears. Furthermore, the two patients had pigmentary skin anomalies, broad and short hands and fingers, and hypotonia. However, they differed in the degree of ID and ophthalmological findings. Patient 1 showed profound ID and poor macular function, whereas patient 2 had moderate ID and normal fundus. Mosaic tetrasomy of chromosome 12p was found in 40 and 25% of the cells of patients 1 and 2, respectively, by fluorescent in situ hybridization of cultured skin fibroblasts. The higher percentage of mosaic cells with tetrasomy 12p found in patient 1 may explain the severe phenotype. This report expands the clinical manifestations of PKS and highlights the variable expressivity of clinical features in relation to the cytogenetics findings.

16.
Front Genet ; 10: 1131, 2019.
Article in English | MEDLINE | ID: mdl-31781176

ABSTRACT

Small supernumerary marker chromosomes (sSMCs) are present in ∼3.3 million of presently living human beings. The majority of these sSMC carriers (i.e. ∼2.1 million) will never know about their condition, as they are perfectly healthy and just may learn by chance about it, e.g. if chromosomal analysis is done for some reason during their life time. The remainder ∼1.2 million of sSMC carriers are clinically affected either due to adverse effects of gained genetic material being present on the sSMC and/or by uniparental disomy of the sSMC's sister chromosomes. Influence of mosaicism being present in 50% of sSMC carriers is controversy discussed in the literature. Even though genotype-phenotype correlation for sSMCs progressed during last years, still there are only eight sSMC-associated syndromes characterized yet, which may go together with mosaicism. Here we summarize presently available data for carriers of sSMCs normally leading to these well-defined syndromes, however, showing (almost) no clinical signs. This can be observed in ∼1 to 30% of the corresponding sSMC-carriers, thus, a high impact for counselling in corresponding prenatal de novo cases is not to be neglected.

17.
Mol Cytogenet ; 12: 39, 2019.
Article in English | MEDLINE | ID: mdl-31497069

ABSTRACT

BACKGROUND: Pallister-Killian syndrome (PKS) (OMIM:#601803) is a rare sporadic genetic disorder characterized by multi-malformations which is caused by the presence of the extra isochromosome 12p. PKS is featured by the tissue-limited mosaicism of the isochromosome 12p [i(12p)]. There were a wide spectrum of prenatal ultrasound findings of PKS, which made it difficult to be found in first or second trimester. Polyhydramnios, diaphragmatic hernia, and rhizomelic limb shortening were the most common prenatal ultrasound abnormalities in PKS. This study retrospectively analyzed the ultrasound findings and molecular cytogenetic results of four PKS fetuses diagnosed by using cord blood samples. RESULTS: The ultrasound anomalies of four PKS fetuses are described as follows: fetal macrosomia, cerebral ventriculomegaly, increased NT thickness, rhizomelic limbs shortening, polyhydramnios. Biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL) measurements were above the mean in three fetuses,while one fetus showed rhizomelic limbs shortening. Combined with this study and previous literature, polyhydramnios was the most frequent anomaly observed in prenatal ultrasound examination of PKS, which accounted for 48% (94/194). Fetal macrosomia was present in 15% (29/194), cerebral ventriculomegaly in 13% (25/194), thickened nuchal fold in 9% (18/194), rhizomelic limbs shortening in 26% (51/194). I(12p) was found in the karyotype analysis of cultured cord blood lymphocytes and the mosaic ratios ranged from 2 to 5%. Single nucleotide polymorphisms array (SNP-array) results suggested that the whole short arm of chromosome 12 was duplicated with 2~3 copies. Fluorescence in situ hybridization (FISH) was performed to confirm the results of karyotype and SNP-array. CONCLUSIONS: In case non-specific indicators such as fetal macrosomia, polyhydramnios and rhizomelic limbs shortening are observed meanwhile in prenatal ultrasound, targeted detection of PKS should be considered. In the prenatal diagnosis of PKS, the combination of SNP-array and FISH with conventional karyotype are the key to seek i(12p) and for precise diagnosis.

18.
Mol Genet Genomic Med ; 7(10): e00939, 2019 10.
Article in English | MEDLINE | ID: mdl-31454185

ABSTRACT

BACKGROUND: Pallister-Killian syndrome (PKS) is a rare sporadic disorder caused by tetrasomy of the short arm of chromosome 12. The main clinical manifestations are global developmental delay, intellectual disability, epilepsy, dysmorphic features, hypopigmented and/or hyperpigmented lesions, and multiple congenital anomalies. PKS is associated with tissue mosaicism, which is difficult to diagnose through peripheral blood sample by conventional cytogenetic methods and fluorescence in situ hybridization. METHODS: Here, we report five patients with PKS. We delineate their clinical phenotypes and we compare them with previously published cases. We used array Comparative Genomic Hybridization (aCGH) with DNA extracted from peripheral blood samples. The five patients have also been tested by conventional cytogenetics techniques. RESULTS: Four out of five patients showed tetrasomy 12p by aCGH. Three of the four patients have typical i(12p) and one of the four demonstrated atypical tetrasomy 12p. The percentage of mosaicism was as low as 20%. Our cohort exhibited the typical PKS phenotypes. CONCLUSION: Our results demonstrate the efficacy of aCGH for the diagnosis of PKS from DNA extracted from lymphocytes. Thus, for patients suspected of PKS, we recommend performing aCGH on lymphocytes at an early age before  proceeding to skin biopsy. aCGH on peripheral blood samples is sensitive in detecting low level of mosaicism and it is less invasive method than skin biopsy. We reviewed also the literature concerning the previously published PKS patients diagnosed by aCGH.


Subject(s)
Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes, Human, Pair 12/genetics , Comparative Genomic Hybridization , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Karyotyping , Male , Phenotype , Tetrasomy
19.
Medicina (Kaunas) ; 55(7)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311125

ABSTRACT

The ductus venosus (DV) is a shunt that allows the direct flow of well-oxygenated blood from the umbilical vein (UV) to the coronary and cerebral circulation through the foramen ovale. Its agenesis has been associated with chromosomal abnormalities and rare genetic syndromes, structural defects, intrauterine growth restriction (IUGR) and even antepartum fetal demise. Pallister-Killian Syndrome (PKS) is a rare sporadic disorder with specific tissue mosaic distribution of an extra 12p isochromosome (i(12p)). Its main clinical features are moderate to severe intellectual disability/neuromotor delay, skin pigmentation abnormalities, typical facial appearance, variable association with multiple congenital malformations and epilepsy. Though prenatal findings (including congenital diaphragmatic hernia, ventriculomegaly, congenital heart disease, polyhydramnios, and rhizomelic shortening) have been described in literature, prenatal diagnosis is difficult as there are no associated identification signs no distinctive or pathognomonic signs, and some of these malformations are hard to identify prenatally. The tissue mosaicism linked to this syndrome and the decrease of the abnormal clone carrier of the i(p12) after successive trypsinizations of cultured cells makes the diagnosis even more challenging. We present the case of a 27.5 weeks pregnant woman with a fetal ductus venosus agenesis (DVA) as the main guide marker. To our knowledge this is the first case published in literature reporting a DVA as a guide sign to diagnose a complex condition as Pallister-Killian syndrome. We also underscore the key role of new genetic techniques as microarrays to avoid misdiagnosis when only a subtle sonographic sign is present in complex conditions like this.


Subject(s)
Biomarkers , Chromosome Disorders/complications , Umbilical Veins/growth & development , Adult , Chromosome Disorders/blood , Chromosome Disorders/genetics , Chromosomes, Human, Pair 12/genetics , Female , Genetic Testing/methods , Humans , Karyotyping/methods , Pregnancy , Trisomy/genetics , Trisomy/physiopathology , Umbilical Veins/physiopathology
20.
Eur J Paediatr Neurol ; 23(4): 653-656, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31178275

ABSTRACT

INTRODUCTION: Pallister-Killian Syndrome (PKS) (OMIM #601803) is a rare genetic disorder caused by a mosaic tetrasomy of the short arm of chromosome 12. Epilepsy is a frequent concern in PKS patients. METHODS: we report 3 PKS patients, with early-onset myoclonic epilepsy and photosensitivity. In these children, we analysed epileptic history and the EEG phenotype. RESULTS: Epilepsy onset was in the first 2 years of life in all patients and in 2 of them myoclonic seizures were the only seizure type. In all children photosensitivity was observed and myoclonic seizures were mainly related to low-frequency (1-6 Hz) intermittent photic stimulation. Levetiracetam was effective and well tolerated in the 2 treated patients. CONCLUSIONS: early-onset myoclonic epilepsy is a possible clinical manifestation of PKS. Low-frequency photosensitivity is a peculiar bioelectrical marker in these children.


Subject(s)
Chromosome Disorders/complications , Epilepsies, Myoclonic/genetics , Photosensitivity Disorders/genetics , Child, Preschool , Chromosomes, Human, Pair 12 , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...