Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.818
Filter
1.
J Ethnopharmacol ; 336: 118705, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181288

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Palm buds are a natural green resource of the forest, which are not only rich in nutrients but contain a large number of phenolic acids and flavonoids, among other components. It has a variety of biological activities such as antioxidant and uterine smooth muscle stimulation. AIM OF THE STUDY: To evaluate the safety of palm buds for use as a nutraceutical product and food by evaluating the toxicity, subacute toxicity and genotoxicity of the young palm buds. Also studied for its immune-enhancing activity. MATERIALS AND METHODS: Acute toxicity tests were performed in mice using the maximum tolerance method, and the manifestations of toxicity and deaths were recorded after administration of 10,000 mg/mL for 14 consecutive d (days) of observations. To assess subacute toxicity, mice were treated with palm buds (750, 1500, or 3000 mg/mL) daily for 28 days. The teratogenicity of palm buds was assessed by the Ames test, the mouse bone marrow cell micronucleus test, and the mouse spermatozoa malformation test. In addition, we evaluated the immune-enhancing ability of palm buds by the mouse carbon profile test, delayed-type metamorphosis reaction, and serum hemolysin assay. RESULTS: In the acute toxicity study, the Median Lethal Dose (LD50) was greater than 10,000 mg/kg bw in both male and female rats. There were also no deaths or serious toxicities in the subacute study. The no-observed-adverse-effect level (NOAEL) was 3000 mg/kg bw. However, the mice's food intake decreased after one week. The medium and high dose groups had a reducing effect on body weight in mice of both sexes. In addition, the changes in organ coefficients of the liver, kidney and stomach in male mice were significantly higher in the high-dose group (3.23 ± 0.35, 0.75 ± 0.05, 0.57 ± 0.05 g) than in the control group (2.94 ± 0.18, 0.58 ± 0.05, 0.50 ± 0.02 g). Hematological analyses showed that all the indices of the rats in each palm sprout dose group were within the normal range. The results of blood biochemical indicators showed that there was a significant reduction in TP in the blood of male mice in the high-dose group (44.6 ± 7.8 g/L) compared to the control group (58.3 ± 15.1 g/L). In histopathological analysis, none of the significant histopathological changes were observed. The results of the immunological experiment in mice showed that the liver coefficient and thymus coefficient of the high-dose group (8400 mg/kg) were significantly lower than the control group. There was no remarkable difference in auricle swelling between each dose palm bud group (1400, 2800, or 8400 mg/kg) and the control group. The anti-volume number of the high-dose group was significantly increased. CONCLUSION: Palm buds have non-toxic effects in vivo and have little effect on non-specific and cellular immunity in the test mice within the dose range of this experiment. The immunoenhancement in mice is mainly achieved through humoral immunity. In conclusion, our results suggest that palm buds are safe for use as healthcare products and food.


Subject(s)
Arecaceae , Toxicity Tests, Acute , Animals , Female , Male , Arecaceae/chemistry , Mice , Plant Extracts/toxicity , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Immunologic Factors/toxicity , Rats , Toxicity Tests, Subacute , Dose-Response Relationship, Drug , Micronucleus Tests , Mutagenicity Tests , Hemolysin Proteins/toxicity , Lethal Dose 50
2.
Trop Life Sci Res ; 35(1): 1-12, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39262869

ABSTRACT

Thiamine or vitamin B1 is a micronutrient that has a crucial function in all living organisms and involved in several biochemical reactions. Concerning the capability of thiamine in inducing plant health, a study was carried out by applying bacterial endophytes (Pseudomonas aeruginosa and Burkholderia cepacia cultures) in four-month-old oil palm seedlings (Elaeis guineensis) via soil drenching technique to evaluate the effect towards thiamine. Spear leaves were sampled day 0 to 14 to analyse the expression of gene coding for the first two enzymes thiamine biosynthesis pathway, THI4 and THIC via qPCR analysis. The gene expression by qPCR showed a significant increase of up to 3-fold while high-performance liquid chromatography (HPLC) analysis for quantification of thiamine and its derivatives accumulated ~ 20-fold in total thiamine when compared to control seedlings. However, concentration of thiamine metabolites was negatively correlated with the expression of THIC and THI4 gene transcripts suggesting post-transcriptional regulation mediated by an RNA regulatory element, a thiamine pyrophosphate (TPP) riboswitch. Our findings demonstrated that the application of bacterial endophytes affected thiamine biosynthesis and enhanced overall thiamine content. This might increase the plant's resistance towards stress and would be useful in oil palm maintenance for maximum yield production.

3.
FEMS Microbiol Ecol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39264053

ABSTRACT

Understanding the microbial communities in asymptomatic oil palm seedlings is crucial for developing disease-suppressive microbiota against basal stem rot (BSR) in oil palm. In this study, we compared the microbial communities in bulk soil, rhizosphere, and endosphere of control, asymptomatic, and symptomatic seedlings following inoculation with Ganoderma boninense. Our findings revealed significant shifts in microbial structure and interactions, particularly in asymptomatic seedlings. Both Actinobacteriota and Ascomycota were notably enriched in these samples, with Actinobacteriota identified as keystone taxa. Long-read shotgun metagenomics demonstrated that 67.4% of enriched Actinobacteriota taxa were unique to asymptomatic seedlings. Similarly, Ascomycota members showed significant enrichment, suggesting their potential role in BSR suppression. The consistent identification of these phyla across various analyses underscores their importance in disease resistance. This is the first report detailing the shifts in prokaryotic and fungal communities in asymptomatic and symptomatic seedlings, offering insights into potential disease-suppressive taxa across three compartments: bulk soil, rhizosphere, and endosphere of oil palm seedlings.

4.
J Sci Food Agric ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264093

ABSTRACT

BACKGROUND: Plant-based beverages have recently seen a significant increase in market demand. However, many of these products suffer from poor emulsion stability and low protein content. Gums have commonly been used to enhance emulsion stability but they do not improve the amino acid profile. This study investigated the use of multiples plant proteins to enhance both the stability and nutritional value of plant-based beverages. RESULT: Pea and rice bran proteins both enhanced emulsion stability. Pea protein enhanced the viscosity of the continuous phase whereas rice bran protein lowered interfacial tension. When applied synergistically, competitive adhesion occurred. Rice bran protein gradually displaced pea protein from the oil droplet surface as its concentration increased, leading to emulsion destabilization due to the displaced pea protein. The use of high-pressure homogenization further enhanced the stability of the emulsion by unfolding protein partially. However, increasing homogenization pressure (>500 Bar) and homogenization cycle (>2 cycles) led to protein aggregation due to excessive exposure of its hydrophobic core. The emulsion formed was resistant to coalescence at 4 °C for 28 days and was stable under high pH and low ionic conditions. CONCLUSION: The synergistic combination of plant proteins and the effective utilization of co-processing (homogenization) can enhance the functionality of the individual proteins significantly, leading to the formation of a stable emulsion. The use of plant protein mixture as a stabilizer not only improved the emulsion stability but also ensured a plant-based beverage with a complete amino acid profile for the vegan community. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
Br J Haematol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226157

ABSTRACT

Large language models (LLMs) have significantly impacted various fields with their ability to understand and generate human-like text. This study explores the potential benefits and limitations of integrating LLMs, such as ChatGPT, into haematology practices. Utilizing systematic review methodologies, we analysed studies published after 1 December 2022, from databases like PubMed, Web of Science and Scopus, and assessing each for bias with the QUADAS-2 tool. We reviewed 10 studies that applied LLMs in various haematology contexts. These models demonstrated proficiency in specific tasks, such as achieving 76% diagnostic accuracy for haemoglobinopathies. However, the research highlighted inconsistencies in performance and reference accuracy, indicating variability in reliability across different uses. Additionally, the limited scope of these studies and constraints on datasets could potentially limit the generalizability of our findings. The findings suggest that, while LLMs provide notable advantages in enhancing diagnostic processes and educational resources within haematology, their integration into clinical practice requires careful consideration. Before implementing them in haematology, rigorous testing and specific adaptation are essential. This involves validating their accuracy and reliability across different scenarios. Given the field's complexity, it is also critical to continuously monitor these models and adapt them responsively.

6.
Cureus ; 16(8): e66077, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39229394

ABSTRACT

Introduction Occupational noise-induced hearing loss (NIHL) continues to be a significant public health issue globally, with Malaysia being no exception. In Malaysia, the majority of NIHL cases are reported from the manufacturing sector, with Selangor among the states with the highest number of confirmed cases. This study aimed to assess the prevalence of and factors associated with occupational NIHL among palm oil mill workers in Selangor, Malaysia. Methods A cross-sectional study was conducted to analyze the data from the data collection form, noise risk assessment reports, and audiometric test results done between 2021 and 2022 with a comparable baseline audiometric test. Results A total of 143 participants from three palm oil mills joined this study. The prevalence of NIHL was 42.7% (n = 61). Following the logistic regression model, NIHL was significantly associated with a duration of employment of 10 years and above, a history of occupational noise exposure at the previous workplace, and the use of personal hearing protectors at the current workplace with an adjusted OR of 2.41 (95% CI (1.14, 5.07)), 5.89 (95% CI (2.38, 14.53)), and 0.36 (95% CI (0.16, 0.83)), respectively. Conclusion The prevalence of NIHL among the study participants was high, and the associated factors are modifiable factors that can be prevented with a comprehensive hearing conservation program in the palm oil mills.

7.
Heliyon ; 10(16): e35975, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229521

ABSTRACT

Heterogeneous catalysts consisting of potassium supported on zeolites are active for transesterification, but the effect of zeolite properties is not clearly understood. This work compares catalysts containing 12 wt.% potassium on zeolite sodium A and X (12K/NaA and 12K/NaX) in terms of performance and physicochemical properties. Both catalysts were prepared by ultrasound-assisted impregnation with potassium acetate buffer. 12K/NaA is a better catalyst in transesterification of palm oil, giving a higher biodiesel yield than 12K/NaX in the first run (99.1 ± 0.3 % and 77.9 ± 2.2 %, respectively). From characterization by CO2-TPD, XRD, FTIR, XPS, and SEM-EDS, both catalysts have similar basicity but different dispersion of carbonates and interaction on the zeolites. The 12K/NaA has those species on external surfaces and more monodentate carbonate than 12K/NaX. Ion exchange occurs between potassium ions from the precursor and sodium ions from the zeolite. Moreover, 12K/NaA is more stable, providing higher biodiesel yields in the second and third catalytic cycles.

8.
Int J Biol Macromol ; 279(Pt 2): 135285, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233172

ABSTRACT

This research aimed to elaborate a gelatin-Kappa carrageenan-based packaging with 0.22 %, 0.44 %, and 0.88 % w/v of Mekwiya date palm seeds extract (DSEMK). This extract improved the mechanical, physical, and thermal properties of the films. Moisture content, water solubility, and water vapor permeability were reduced from 17.54 ± 0.02 to 12.18 ± 0.02, from 77.61 ± 0.02 to 25.35 ± 0.29 %, and from 5.28 ± 0.29 to 1.69 ± 0.03 g s-1 m-1 Pa-1 × 10-10, respectively. During thermal degradation, DSEMK4 film had a residual weight of 27.99 %, compared to 20.67 % for the control. Despite a decline in the film's tensile strength from 24.19 to 8.94 MPa with the incorporation of DSEMK, elongation at the breaking point increased from 37.66 ± 0.16 to 46.17 ± 0.25 %. The film containing DSEMK4 displayed the highest phenolic contents and illustrated the best antioxidant effects in DPPH and FRAP assays, with IC50s of 756 and 1445 µg/mL, respectively and inhibited pathogen growth on the meat surface. Over storage at 4 °C, monitoring of pH, lipid and protein oxidation parameters, microbial spoilage, optical properties, and sensory attributes disclosed that the DSEMK-films successfully enhanced the meat quality and safety. These findings were supported by principal component analysis and heat maps.

9.
BMC Res Notes ; 17(1): 251, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238033

ABSTRACT

OBJECTIVE: Sago palm (Metroxylon sagu Rottb.) is one of the most important economic crops abundantly found in Mukah, Sarawak, Malaysia. The robustness of the palm triggered the Sarawak government's selection as one of the state's commodity crops, with the opening of several sago palm plantations. However, stunted (non-trunking) palms were reported in several sago palm plantations despite attaining a maturity period of more than ten years after cultivation. Research targeting this problem has been conducted in various fields, yet information on molecular mechanisms is still scarce. This study aimed to determine the genes responsible for sago palm's normal phenotype (trunking) by attaining leaf transcriptomes from samples of all trunking sago palms from different sago palm plantations. DATA DESCRIPTION: The conventional CTAB method was employed in the present investigation to extract total RNA from leaf tissues. Transcriptome sequencing was conducted on the Illumina NovaSeq 6000 platform. Differential expression analysis was performed using the DESeq2 package. A total of 6,119 differentially expressed genes, comprising 4,384 downregulated and 1,735 upregulated genes, were expressed in all three sago palm datasets. The datasets provide insights into the commonly expressed genes among trunking sago palms.


Subject(s)
Arecaceae , Transcriptome , Arecaceae/genetics , Malaysia , Transcriptome/genetics , Plant Leaves/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Phenotype
10.
BMC Public Health ; 24(1): 2468, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256687

ABSTRACT

BACKGROUND: Tropical oils such as palm and coconut oils are renowned for their high saturated fat content and culinary versatility. However, their consumption has sparked debate regarding their health benefits and production concerns. The purpose of this review was to map existing evidence on the health benefits and challenges associated with the consumption of tropical oils. METHOD: The recommendations for conducting a scoping review by Arksey and O'Malley were followed. PubMed, Dimensions AI, Central, JSTOR Google, Google Scholar, and ProQuest databases were searched for relevant papers. The predetermined keywords used were Consumption" AND "Tropical oil," as well as "Health benefits" OR "Health challenges" AND "Tropical Countries." Peer-reviewed and grey literature published in English were eligible for this review. RESULT: Tropical oils, such as palm and coconut oils, provide health benefits including essential vitamins (A and E) that enhance ocular health, boost immunity, and support growth. They are also recognised for their role in managing high blood sugar, obesity, and cholesterol levels, while offering antioxidant and anti-inflammatory properties. These oils have wound-healing abilities and are commonly used in infant nutrition and traditional cooking. Nevertheless, prolonged and repeated use of tropical oils to high temperature can degrade vitamin E, whereas excessive intake may result in overdose. Health concerns include oxidative risks, diabetes, cancer, coronary heart disease, high blood pressure, and acrylamide formation due to production challenges excessive consumption. Additional issues include obesity, suboptimal oil production, misconceptions, regulatory obstacles, and preferences for alternative fats. CONCLUSION: This review suggest that tropical oils provide essential health benefits, including vitamins and antioxidant properties, but pose significant health risks and production challenges, particularly when exposed to high temperatures and through excessive intake. Guidelines on the consumption of tropical oils in the tropical regions are necessary to regulate their consumption.


Subject(s)
Coconut Oil , Tropical Climate , Humans , Palm Oil , Plant Oils , Guidelines as Topic
11.
Article in English | MEDLINE | ID: mdl-39234899

ABSTRACT

AIM: To present evidence- and consensus-based recommendations for the diagnosis abnormal uterine bleeding. METHODS: A literature search for the diagnosis of abnormal uterine bleeding was systematically conducted in PubMed from its inception to May 2024 to identify meta-analyses, reviews, randomized controlled trials, and clinical trials, followed by an additional systematic search using keywords. Based on this evidence, an expert panel developed background, clinical, and future research questions. RESULTS: Based on a systematic search and the collected evidence, we developed five background questions, three clinical questions, and one future research question, with recommendations and/or statements. Evidence and recommendations are provided for clinical questions. Additionally, we developed a flowchart for diagnosis showing the steps of the examinations to be performed. CONCLUSION: The flowchart and nine recommendations/statements specify an efficient diagnostic procedure to differentiate abnormal causative diseases of uterine bleeding optimized for actual Japanese situations.

12.
Cureus ; 16(7): e65083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39171020

ABSTRACT

Objectives Large language models (LLMs), for example, ChatGPT, have performed exceptionally well in various fields. Of note, their success in answering postgraduate medical examination questions has been previously reported, indicating their possible utility in surgical education and training. This study evaluated the performance of four different LLMs on the American Board of Thoracic Surgery's (ABTS) Self-Education and Self-Assessment in Thoracic Surgery (SESATS) XIII question bank to investigate the potential applications of these LLMs in the education and training of future surgeons. Methods The dataset in this study comprised 400 best-of-four questions from the SESATS XIII exam. This included 220 adult cardiac surgery questions, 140 general thoracic surgery questions, 20 congenital cardiac surgery questions, and 20 cardiothoracic critical care questions. The GPT-3.5 (OpenAI, San Francisco, CA) and GPT-4 (OpenAI) models were evaluated, as well as Med-PaLM 2 (Google Inc., Mountain View, CA) and Claude 2 (Anthropic Inc., San Francisco, CA), and their respective performances were compared. The subspecialties included were adult cardiac, general thoracic, congenital cardiac, and critical care. Questions requiring visual information, such as clinical images or radiology, were excluded. Results GPT-4 demonstrated a significant improvement over GPT-3.5 overall (87.0% vs. 51.8% of questions answered correctly, p < 0.0001). GPT-4 also exhibited consistently improved performance across all subspecialties, with accuracy rates ranging from 70.0% to 90.0%, compared to 35.0% to 60.0% for GPT-3.5. When using the GPT-4 model, ChatGPT performed significantly better on the adult cardiac and general thoracic subspecialties (p < 0.0001). Conclusions Large language models, such as ChatGPT with the GPT-4 model, demonstrate impressive skill in understanding complex cardiothoracic surgical clinical information, achieving an overall accuracy rate of nearly 90.0% on the SESATS question bank. Our study shows significant improvement between successive GPT iterations. As LLM technology continues to evolve, its potential use in surgical education, training, and continuous medical education is anticipated to enhance patient outcomes and safety in the future.

13.
Food Res Int ; 192: 114683, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147537

ABSTRACT

This work evaluated structured lipids (SLs) through chemical and enzymatic interesterification (CSLs and ESLs). Blends of soybean oil and peanut oil 1:1 wt% were used, with gradual addition of fully hydrogenated crambe to obtain a final behenic acid concentration of 6, 12, 18, and 24 %. Chemical catalysis used sodium methoxide (0.4 wt%) at 100 °C for 30 min, while enzymatic catalysis used Lipozyme TL IM (5 wt%) at 60 °C for 6 h. Major fatty acids identified were C16:0, C18:0, and C22:0. It was observed that with gradual increase of hard fat, the CSLs showed high concentrations of reaction intermediates, indicating further a steric hindrance, unlike ESLs. Increased hard fat also altered crystallization profile and triacylglycerols composition and ESLs showed lower solid fat, unlike CSLs. Both methods effectively produced SLs as an alternative to trans and palm fats, view to potential future applications in food products.


Subject(s)
Palm Oil , Soybean Oil , Palm Oil/chemistry , Soybean Oil/chemistry , Esterification , Peanut Oil/chemistry , Trans Fatty Acids/chemistry , Trans Fatty Acids/analysis , Fatty Acids/chemistry , Lipids/chemistry , Triglycerides/chemistry , Food Handling/methods , Lipase/chemistry , Lipase/metabolism , Hydrogenation
14.
R Soc Open Sci ; 11(7): 240497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39086816

ABSTRACT

Nano-Fe3O4 was loaded onto coconut-based activated carbon fibres (CACF) using an electrostatic self-assembly method. The effects of the mass ratio of CACF to nano-Fe3O4, loading time, pH and temperature on the loading effect were investigated and ideal loading conditions were determined. To study the adsorption performance of MACF@Fe3O4 for methylene blue, the effects of the initial concentration, pH and time on the adsorption were investigated and the working conditions of adsorption were established. MACF@Fe3O4 was systematically characterized. Adsorption kinetics were investigated under ideal conditions. The ideal loading conditions for MACF@Fe3O4 were as follows: mass ratio of 1:1, 20 min, pH 9.36, 22.5°C. The saturation magnetization of MACF@Fe3O4 was 48.2263 emu·g-1, which could be quickly separated under an external magnetic field. When the dosage was 0.010 g, the adsorption rate reached 97.29% and the maximum adsorption capacity was 12.1616 mg·g-1. The adsorption process conformed to pseudo-first-order kinetics during the first 15 min and pseudo-second-order kinetics during 20-120 min. The equations were ln( Q e - Q t )=2.2394-0.0689t and t Q t =0.0774 + 0.5295t , respectively. The isothermal adsorption model showed that MACF@Fe3O4 was more in line with the Langmuir model, indicating that the adsorption process was mainly monolayer adsorption. The thermodynamic analysis results showed that the adsorption process of MB by MACF@Fe3O4 was an endothermic process. In this study, MACF@Fe3O4 with high adsorption capacity and easy separation from coconut palm fibres has good application prospects in the field of adsorption, which can promote the high-value utilization of coconut palms.

15.
Ambio ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093373

ABSTRACT

Indonesia is the world's third largest cocoa producer, but production is decreasing since 2011. We revisited cocoa farmers for an environmental assessment in Luwu Timur, Sulawesi, 7 months after a socio-economic survey on cocoa certification outcomes and observed many cocoa plantations being converted into oil palm and maize. Including our field data as well as secondary data on commodity prices and yields, we outline reasons for cocoa conversion, potential consequences for biodiversity, and assess the future outlook for the Indonesian cocoa sector. Low cocoa productivity, volatile cocoa prices and higher revenue for oil palm, among others, drive land-use change. If shade trees are cut during cocoa conversion, it may have negative implications for biodiversity. Solutions to low soil fertility, omnipresent pests and diseases, and stable producer prices are needed to increase profitability of cocoa and prevent conversion of cocoa agroforests to oil palm monocultures.

16.
Int J Phytoremediation ; : 1-14, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138934

ABSTRACT

Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.


The novelty of this study lies in the implementation of combined approach by phytoremediation with biochar modified with melamine. This study highlighted synergistic integration of two concurrent systems. The biochar generated from waste palm kernel shells played a pivotal role in facilitating the plants' survival and resilience against the paraquat toxicity, rather than succumbing to its deleterious effects. This research delineates a robust methodology for the elimination of emerging pollutants, offering researchers a platform to make pioneering advancements in this scientific field for sustainable future.

17.
J Biosci Bioeng ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39112181

ABSTRACT

Most agricultural products are presently cultivated on marginal lands with poor soil properties and unfavorable environmental conditions (diseases and abiotic stresses), which can threaten plant growth and yield. Plant growth-promoting bacteria (PGPB) are beneficial bacteria that promote plant growth and biomass and act as biocontrols against diseases and stress. However, most isolated PGPBs have a single function and low survival rates owing to their limited growth behaviors. In this study, we isolated multifunctional PGPB from oil palm rhizosphere, quantitatively measured their activities, and evaluated their effectiveness in Brassica rapa (Komatsuna) cultivation. This is the first study to report the isolation of three multifunctional PGPB strains with ammonium production, phosphate-potassium-silicate solubilization, and indole-3-acetic acid (IAA) production from the oil palm rhizosphere, namely Kosakonia oryzendophytica AJLB38, Enterobacter quasimori AJTS77, and Lelliottia jeotgali AJTS83. Additionally, these strains showed antifungal activity against the oil palm pathogen Ganoderma boninense. These strains grow under high temperature, acidic and alkaline pH, and high salt concentration, which would result in their proliferation in various environmental conditions. The cultivation experiments revealed these strains improved the growth and biomass with half the dosage of chemical fertilizer application, which was not significantly different to the full dosage. Furthermore, the overall plant growth-promoting activities in quantitative assays and overall B. rapa growth in cultivation experiments were statistically correlated, which could contribute to the prediction of plant growth promotion without plant cultivation experiments. Thus, the selected PGPB could be valuable as a biofertilizer to improve soil health and quality and promote agricultural sustainability.

18.
Sci Rep ; 14(1): 18634, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128922

ABSTRACT

Water scarcity and droughts are among the most challenging issues worldwide, particularly in arid and semi-arid regions like Saudi Arabia. Date palm (Phoenix dactylifera L.), a major crop in Saudi Arabia, is being significantly affected by water scarcity, soil salinity, and desertification. Alternative water sources are needed to conserve freshwater resources and increase date palm production in Saudi Arabia. On the other hand, Saudi Arabia has a significant number of aquaculture farms that generate substantial amounts of wastewater, which can be utilized as an alternative source of irrigation. Therefore, this study aimed to assess the potential of aquaculture wastewater as an alternative irrigation source for date palm orchards. Aquaculture wastewater was collected from 12 different farms (Al-Kharj, Al-Muzahmiya, and Al-Qassim regions, Saudi Arabia) and its quality was analyzed. The impacts of aquaculture wastewater irrigation on soil quality, nutrient availability, nutrient status of date palm trees, and dates fruit quality were assessed in comparison to source water (freshwater) irrigation at Al-Kharj, Al-Muzahmiya, and Al-Qassim regions. The water quality analyses showed higher salinity (EC = 3.31 dSm-1) in farm Q3, while all other farms demonstrated no salinity, sodicity, or alkalinity hazards. Moreover, the aquaculture wastewater irrigation increased soil available P, K, NO3--N, and NH4+-N by 49.31%, 21.11%, 33.62%, and 52.31%, respectively, compared to source water irrigation. On average, date palm fruit weight, length, and moisture contents increased by 26%, 23%, and 43% under aquaculture wastewater irrigation compared to source water irrigation. Further, P, K, Fe, Cu, and Zn contents in date palm leaf were increased by 19.35%, 34.17%, 37.36%, 38.24%, and 45.29%, respectively, under aquaculture wastewater irrigation compared to source water irrigation. Overall, aquaculture wastewater irrigation significantly enhanced date palm plant growth, date palm fruit quality, and soil available nutrients compared to freshwater irrigation. It was concluded that aquaculture wastewater can be used as an effective irrigation source for date palm farms as it enhances soil nutrient availability, date palm growth, and date fruit yield and quality. The findings of this study suggest that aquaculture wastewater could be a viable alternative for conserving freshwater resources and increase date palm production in Saudi Arabia.


Subject(s)
Agricultural Irrigation , Aquaculture , Fruit , Phoeniceae , Soil , Wastewater , Agricultural Irrigation/methods , Aquaculture/methods , Soil/chemistry , Fruit/growth & development , Saudi Arabia , Nutrients/analysis , Salinity
19.
Int J Biol Macromol ; : 134983, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39209591

ABSTRACT

Enzymatic treatment on lignocellulosic biomass has become a trend in preparing nanocellulose (NC), but the process must be optimized to guarantee high production yield and crystallinity. This study offers insights into an innovative protocol using cultivated fungal cellulase and xylanase to improve NC production from raw oil palm leaves (OPL) using five-factor-four-level Taguchi orthogonal design for optimizing parameters, namely substrate and enzyme loading, surfactant concentration, incubation temperature and time. Statistical results revealed the best condition for producing NC (66.06 % crystallinity, 43.59 % yield) required 10 % (w/v) substrate, 1 % (v/v) enzyme, 1.4 % (w/v) Tween-80, with 72-h incubation at 30 °C. Likewise, the highest sugar yield (47.07 %) was obtained using 2.5 % (w/v) substrate, 2.0 % (v/v) enzyme, 2.0 % (w/v) Tween-80, with 72-h incubation at 60 °C. The auxiliary enzymes used in this study, i.e., xylanase, produced higher crystallinity NC, showing widths between 8 and 12 nm and lengths >1 µm and sugars at 47.07 % yield. Thus, our findings proved that optimizing the single-step enzymatic hydrolysis of raw OPL could satisfactorily produce relatively crystalline NC and sugar yield for further transformation into bio-nanocomposites and biofuels. This study presented a simple, innovative protocol for NC synthesis showing characteristics comparable to the traditionally-prepared NC, which is vital for material's commercialization.

20.
Braz J Microbiol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190259

ABSTRACT

Macaw palm (Acrocomia aculeata Jacq.) is a palm, native to Brazilian territory that stands out due to the amount of oil produced with applications in the biodiesel industry, cosmetics, and food. Its commercial exploitation in Brazil, including phytosanitary management is based on concepts and practices of regenerative agriculture, which has the responsibility of sustainable cultivation by avoiding, for example, the use of chemical pesticides. Recently, root and stem rot disease were reported in macaw palm seedlings caused by Phytophthora palmivora. Managing this plant pathogen is complex, and the chemical control of this soil-borne oomycete is not viable, in addition to the negative impact on the environment. Many microorganisms are studied and used as biological control agents (BCAs) against pathogens, among them the community of endophytic fungi associated with plants. This is a sustainable biotechnological alternative for plant disease control. The community of cultivable endophytic fungi associated with healthy roots of macaw palm was explored using the extinction cultivation technique and a screening was carried out to select potential antagonists against oomycetes through the dual culture test. Specific gene regions from the best isolates were amplified for identification. A total of 250 isolates were obtained, and 46 were selected for in vitro tests against representatives of phytopathogenic oomycetes. After tests against Phytophthora heterospora, Phytophthora palmivora, Pythium aphanidermatum, and Pythium deliense, two isolates were selected as potential antagonists. The phylogenetic analysis of selected isolates showed that they belong to two different species: Talaromyces sayulitensis COAD 3605 and Epicoccum italicum COAD 3608. The percentage of inhibition of phytopathogenic oomycetes testedwas until 82% in the antagonism tests conducted. From the 46 isolates selected, only 2 were selected which showed great antagonistic activity towards all oomycetes tested. These fungi will be used in upcoming studies that aim to determine the effectiveness of endophytes in controlling diseases caused by oomycetes in the field.

SELECTION OF CITATIONS
SEARCH DETAIL