Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 923
Filter
1.
Nat Prod Res ; : 1-8, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949646

ABSTRACT

Recent research has indicated that Panax notoginseng saponins (PNS) extracted from the radix of Panax notoginseng (Burkill) F. H. Chen exert antidepressant effects. This study aimed to assess the antidepressive effects of ginsenoside Rg1 and PNS in a depression model induced by chronic unpredictable mild stress (CUMS). Over a period of three weeks, rats were administered ginsenoside Rg1 at a dose of 30 mg/kg and PNS at dosages ranging from 100 to 200 mg/kg body weight per day. To assess how ginsenoside Rg1 and PNS influence depression-like behaviours in rats, various assessments were conducted, including coat state evaluation, forced swim test, and elevated plus maze test. The levels of cortisol and testosterone in serum samples were analysed using the liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method. LC-ESI-MS/MS method provides precise and accurate results. The lower limit of quantification values for cortisol and testosterone were determined as 100 and 2 pg/mL, respectively. Our data demonstrated that both ginsenoside Rg1 and PNS significantly reversed depression-like behaviour in rats by improving coat condition, reducing immobility time in the forced swim test, and increasing time spent in the open arms of the elevated plus maze test. Furthermore, ginsenoside Rg1 and PNS exhibited a regulatory effect on cortisol and testosterone levels in plasma. These findings suggest that ginsenoside Rg1 and PNS may be potential antidepressants in clinical treatment.

2.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999186

ABSTRACT

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Subject(s)
Metabolomics , Mycorrhizae , Panax notoginseng , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Triterpenes , Panax notoginseng/microbiology , Panax notoginseng/chemistry , Triterpenes/metabolism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Mycorrhizae/metabolism , Metabolomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Saponins/metabolism , Saponins/chemistry , Principal Component Analysis , Metabolome
3.
Front Pharmacol ; 15: 1376025, 2024.
Article in English | MEDLINE | ID: mdl-38898926

ABSTRACT

Background: As a bioactive metabolite preparation widely used in acute ischemic stroke (AIS), the efficacy and safety of Panax notoginseng saponins injections (PNSI) in patients with AIS after intravenous thrombolysis remain to be evaluated. Methods: This study included randomized controlled trials published before 26 April 2024 in 8 databases. AIS patients who received intravenous thrombolysis were included. The control group receiving conventional treatment and the treatment group receiving additional PNSI. Primary outcomes were selected as mortality, disability, and adverse events. Secondary outcomes were selected as all-cause mortality, improvement of neurological deficit, quality of life, and cerebral injury indicators. The revised Cochrane Risk of Bias tool was used to assess risk of bias. Risk ratio (RR) and mean differences (MD) were calculated for binary variables and continuous variables, respectively, based on a 95% confidence interval (CI). Results: A total of 20 trials involving 1,856 participants were included. None of them reported mortality or disability. There was no significant difference in the adverse events [RR: 1.04; 95% CI: 0.60 to 1.81] and hemorrhagic transformation [RR: 0.99; 95% CI: 0.36 to 2.70] between the two groups. Compared to the control group, the treatment group had a better effect in neurological improvement assessed by National Institutes of Health Stroke Scale [MD: -2.91; 95% CI: -4.76 to -1.06], a better effect in activities of daily living changes in Barthel Index [MD: 9.37; 95% CI: 1.86 to 16.88], and a lower serum neuron-specific enolase level [MD: -2.08; 95% CI: -2.67 to -1.49]. Conclusion: For AIS patients undergoing intravenous thrombolysis, the use of PNSI improved neurological deficits and enhanced activity of daily living in the short term without increasing the occurrence rate of adverse events. However, due to the moderate to very low certainty of evidence, it is advisable to conduct high-quality clinical trials to validate the findings of this study. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=466851, Identifier CRD42023466851.

4.
Plants (Basel) ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891250

ABSTRACT

Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.

5.
J Mass Spectrom ; 59(7): e5058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842112

ABSTRACT

Analysis of noncovalent interactions between natural products and proteins is important for rapid screening of active ingredients and understanding their pharmacological activities. In this work, the intensity fading MALDI-TOF mass spectrometry (IF-MALDI-MS) method with improved reproducibility was implemented to investigate the binding interactions between saponins from Panax notoginseng and lysozyme. The benchmark IF-MALDI-MS experiment was established using N,N',N″-triacetylchitotriose-lysozyme as a model system. The reproducibility of ion intensities in IF-MALDI-MS was improved by scanning the whole sample deposition with a focused laser beam. The relative standard deviation (RSD) of deposition scanning IF-MALDI-MS is 5.7%. Similar decay trends of the relative intensities of notoginseng saponins against increasing amounts of lysozyme were observed for all six notoginseng saponins. The half-maximal fading concentration (FC50) was calculated to quantitatively characterize the binding affinity of each ligand based on the decay curve. According to the FC50 values obtained, the binding affinities of the six notoginseng saponins were evaluated in the following order: notoginsenoside S > notoginsenoside Fc > ginsenoside Rb1 > ginsenoside Rd > notoginsenoside Ft1 > ginsenoside Rg1. The binding order was in accordance with molecular docking studies, which showed hydrogen bonding might play a key role in stabilizing the binding interaction. Our results demonstrated that deposition scanning IF-MALDI-MS can provide valuable information on the noncovalent interactions between ligands and proteins.


Subject(s)
Muramidase , Panax notoginseng , Saponins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Muramidase/chemistry , Muramidase/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Saponins/chemistry , Saponins/analysis , Saponins/metabolism , Panax notoginseng/chemistry , Protein Binding , Molecular Docking Simulation , Reproducibility of Results , Animals , Trisaccharides
6.
J Med Food ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868856

ABSTRACT

Osteoporotic fractures seriously affect the quality of life of the elderly. Panax notoginseng saponins (PNS) have the potential function of preventing osteoporosis. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase (AKT)/mammalian target of rapamycin (mTOR) pathway is involved in the regulation of osteoporosis and has been proven to be related to VEGF secretion and angiogenesis. Therefore, this study aimed to explore the effects of PNS on ovariectomized rats with osteoporotic fracture through the PI3K/AKT/mTOR pathway and angiogenesis-related factors. Female Sprague-Dawley rats were randomly divided into normal control, fracture model, ovariectomized fracture model, low-dose PNS (100 mg/kg/d), and high-dose PNS (200 mg/kg/d). The ovariectomized rat fracture model was established. In low and high dose groups, PNS was administered intraperitoneally. The vascularization of fracture ends was detected in vitro by micro-CT on the 7th, 14th, and 21st day after modeling, and the area and number of blood vessels in the unit field of vision of the callus healing plane were seen by hematoxylin-eosin staining. The expression levels of PI3K, AKT1, mTOR, hypoxia inducible factor-1; VEGF: vascular endothelial growth factor (HIF-1), VEGF, Ang-1, VEGFR2, and angiopoietin like 2 Gene (ANGPTL2) were determined using Western blotting. In the PNS treatment group, the area of cortical bone increased, the area of callus decreased, and the number and area of blood vessels increased significantly when compared with the ovariectomized fracture model group. PNS regulates the PI3K/AKT/mTOR signaling pathway and promotes the expression of vascular-related cytokines (VEGF, Ang-1, VEGFR2, and ANGPTL2) in osteoporotic fractures. PNS may regulate the expression of vascular-related factors through the PI3K/AKT/mTOR pathway and promote the healing of osteoporotic fractures in ovariectomized rats.

7.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2766-2775, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812177

ABSTRACT

Panax ginseng is reputed to be capable of replenishing healthy Qi and bolstering physical strength, and P. notoginseng can resolve blood stasis and alleviate pain. P. ginseng and P. notoginseng are frequently employed to treat ischemic heart diseases caused by blockages in the heart vessels. Mitochondrial dysfunction often coexists with abnormal mitochondrial morphology, and mitochondrial plasticity and dynamics play key roles in cardiovascular diseases. In this study, primary neonatal rat cardiomyocytes were exposed to 4 hours of hypoxia(H) followed by 2 hours of reoxygenation(R). MitoTracker Deep Red and Hoechst 33342 were used to label mitochondria and nuclei, respectively. Fluorescence images were then acquired using ImageXpress Micro Confocal. Automated image processing and parameter extraction/calculation were carried out using ImagePro Plus. Subsequently, representative parameters were selected as indicators to assess alterations in mitochondrial morphology and function. The active compounds of P. ginseng and P. notoginseng were screened out and identified based on the UPLC-Triple-TOF-MS results and mitochondrial morphometric parameters. The findings demonstrated that RS-2, RS-4, SQ-1, and SQ-4 significantly increased the values of three key morphometric parameters, including mitochondrial length, branching, and area, which might contribute to rescuing morphological features of myocardial cells damaged by H/R injury. Among the active components of the two medicinal herbs, 20(R)-ginsenoside Rg_3, ginsenoside Re, and gypenoside ⅩⅦ exhibited the strongest protective effects on mitochondria in cardiomyocytes. Specifically, 20(R)-ginsenoside Rg_3 might upregulate expression of optic atrophy 1(OPA1) and mitofusin 2(MFN2), and ginsenoside Re and gypenoside ⅩⅦ might selectively upregulate OPA1 expression. Collectively, they promoted mitochondrial membrane fusion and mitigated mitochondrial damage, thereby exerting protective effects on cardiomyocytes. This study provides experimental support for the discovery of novel therapeutic agents for myocardial ischemia-reperfusion injury from P. ginseng and P. notoginseng and offers a novel approach for large-scale screening of bioactive compounds with cardioprotective effects from traditional Chinese medicines.


Subject(s)
Cardiotonic Agents , Drugs, Chinese Herbal , Myocytes, Cardiac , Panax notoginseng , Panax , Rats, Sprague-Dawley , Animals , Rats , Panax/chemistry , Panax notoginseng/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cardiotonic Agents/pharmacology , Chromatography, High Pressure Liquid , Mitochondria/drug effects , Mitochondria/metabolism , Mass Spectrometry
8.
Pharmacol Res ; 204: 107203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719196

ABSTRACT

Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.


Subject(s)
Panax notoginseng , Panax notoginseng/chemistry , Humans , Animals , Immune System/drug effects , Leukocytes/drug effects , Leukocytes/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology
9.
J Plant Physiol ; 299: 154276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801806

ABSTRACT

Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.


Subject(s)
Ginsenosides , Nicotiana , Plants, Genetically Modified , Ginsenosides/biosynthesis , Ginsenosides/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Metabolic Engineering/methods , Biosynthetic Pathways/genetics
10.
Am J Chin Med ; 52(3): 821-839, 2024.
Article in English | MEDLINE | ID: mdl-38699996

ABSTRACT

Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Panax notoginseng , Rats, Sprague-Dawley , Reperfusion Injury , Saponins , Animals , NF-E2-Related Factor 2/metabolism , Ferroptosis/drug effects , Panax notoginseng/chemistry , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Saponins/pharmacology , Male , Rats , Humans , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Phytotherapy
11.
Cell Biochem Biophys ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713401

ABSTRACT

OBJECTIVE: Panax quinquefolius saponins (PQS) and Panax notoginseng saponins (PNS) are key bioactive compounds in Panax quinquefolius L. and Panax notoginseng, commonly used in the treatment of clinical ischemic heart disease. However, their potential in mitigating myocardial ischemia-reperfusion injury remains uncertain. This study aims to evaluate the protective effects of combined PQS and PNS administration in myocardial hypoxia/reoxygenation (H/R) injury and explore the underlying mechanisms. METHODS: To investigate the involvement of HIF-1α/BNIP3 mitophagy pathway in the myocardial protection conferred by PNS and PQS, we employed small interfering BNIP3 (siBNIP3) to silence key proteins of the pathway. H9C2 cells were categorized into four groups: control, H/R, H/R + PQS + PNS, and H/R + PQS + PNS+siBNIP3. Cell viability was assessed by Cell Counting Kit-8, apoptosis rates determined via flow cytometry, mitochondrial membrane potential assessed with the JC-1 fluorescent probes, intracellular reactive oxygen species detected with 2',7'-dichlorodihydrofluorescein diacetate, mitochondrial superoxide production quantified with MitoSOX Red, and autophagic flux monitored with mRFP-GFP-LC3 adenoviral vectors. Autophagosomes and their ultrastructure were visualized through transmission electron microscopy. Moreover, mRNA and protein levels were analyzed via real-time PCR and Western blotting. RESULTS: PQS + PNS administration significantly increased cell viability, reduced apoptosis, lowered reactive oxygen species levels and mitochondrial superoxide production, mitigated mitochondrial dysfunction, and induced autophagic flux. Notably, siBNIP3 intervention did not counteract the cardioprotective effect of PQS + PNS. The PQS + PNS group showed downregulated mRNA expression of HIF-1α and BNIP3, along with reduced HIF-1α protein expression compared to the H/R group. CONCLUSIONS: PQS + PNS protects against myocardial H/R injury, potentially by downregulating mitophagy through the HIF-1α/BNIP3 pathway.

12.
J Ethnopharmacol ; 331: 118331, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38734392

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY: This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS: The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS: This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.


Subject(s)
Camphanes , Panax notoginseng , Rats, Sprague-Dawley , Saponins , Tandem Mass Spectrometry , Animals , Panax notoginseng/chemistry , Camphanes/pharmacokinetics , Saponins/pharmacokinetics , Saponins/chemistry , Saponins/administration & dosage , Saponins/blood , Male , Administration, Oral , Rats , Chromatography, High Pressure Liquid , Adjuvants, Pharmaceutic/chemistry , Adjuvants, Pharmaceutic/pharmacokinetics , Biological Availability
13.
J Adv Res ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38588849

ABSTRACT

INTRODUCTION: Renowned for its role in traditional Chinese medicine, Panax notoginseng exhibits healing properties including bidirectional regulatory effects on hematological system diseases. However, the presence of nodular structures near the top of the main root, known as nail heads, may impact the quality of the plant's valuable roots. OBJECTIVES: In this paper, we aim to systematically analyze nail heads to identify their potential correlation with P. notoginseng quality. Additionally, we will investigate the molecular mechanisms behind nail head development. METHODS: Morphological characteristics and anatomical features were analyzed to determine the biological properties of nail heads. Active component analysis and MALDI mass spectrometry imaging (MALDI-MSI) were performed to determine the correlation between nail heads and P. notoginseng quality. Phytohormone quantitation, MALDI-MSI, RNA-seq, and Arabidopsis transformation were conducted to elucidate the mechanisms of nail head formation. Finally, protein-nucleic acid and protein-protein interactions were investigated to construct a transcriptional regulatory network of nodule development and quality formation. RESULTS: Our analyses have revealed that nail heads originate from an undeveloped lateral root. The content of ginsenosides was found to be positively associated with the amount of nail heads. Ginsenoside Rb1 specifically accumulated in the cortex of nail heads, while IAA, tZR and JAs also showed highest accumulation in the nodule. RNA-seq analysis identified PnIAA14 and PnCYP735A1 as inhibitors of lateral root development. PnMYB31 and PnMYB78 were found to form binary complexes with PnbHLH31 to synergistically regulate the expression of PnIAA14, PnCYP735A1, PnSS, and PnFPS. CONCLUSION: Our study details the major biological properties of nodular structures in P. notoginseng and outlines their impact on the quality of the herb. It was also determined that PnMYB31- and PnMYB78-PnbHLH31 regulate phytohormones and ginsenosides accumulation, further affecting plant development and quality. This research provides insights for quality evaluation and clinical applications of P. notoginseng.

14.
Article in English | MEDLINE | ID: mdl-38676511

ABSTRACT

OBJECTIVE: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder with limited options for reversing its middle-to-late stages. Early intervention is crucial to slow down disease progression. This study aimed to investigate the potential of the NeuroProtect (NP) formula, a combination of geniposide and Panax notoginseng saponins, in preventing AD. We evaluated the effects of the NP formula on amyloid plaque accumulation, neuronal degeneration, and molecular signaling pathways using in vivo and in vitro models. METHODS: To predict functional pathways and potential downstream targets of NP intervention, we employed network pharmacology. The preventative impact of the NP formula was assessed using APP/PS1 mice. We conducted HE staining, ELISA assay, Golgi staining, and immunohistochemistry to detect the protective effect of NP. Additionally, cell experiments were performed to assess cell activity and target protein expression. RESULTS: Network pharmacology analysis revealed 145 drug-disease interactions and identified 5 core active targets associated with AD. Molecular docking results demonstrated strong binding affinity between the components of the NP formula (GP, GN-Rb1, GN-Rg1, NS-R1) and target proteins (STAT3, HIF1A, TLR4, mTOR, VEGFA). Notably, the binding energy between NS-R1 and mTOR was -11.4kcal/mol. Among the top 10 enriched KEGG pathways, the HIF-1 and PI3K-AKT signaling pathways were highlighted. In vivo experiments demonstrated that the NP formula significantly ameliorated pathological changes, decreased the Aß42/Aß40 ratio in the hippocampus and cortex, and increased dendritic spine density in the CA1 region during the early stage of AD. In vitro experiments further illustrated the NP formula's ability to reverse the inhibitory effects of Aß25-35 on cell viability and regulate the expression of Tlr4, Mtor, Hif1a, Stat3, and Vegfa. CONCLUSION: Our findings suggest that NP exhibits neuroprotective effects during the early stages of AD, positioning it as a potential candidate for AD prevention. The NP formula may exert its preventive effects through the HIF-1/PI3K-AKT signaling pathway, with mTOR identified as a key target.

15.
Microorganisms ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674727

ABSTRACT

In the continuous cropping of Panax notoginseng, the pathogenic fungi in the rhizosphere soil increased and infected the roots of Panax notoginseng, resulting in a decrease in yield. This is an urgent problem that needs to be solved in order to effectively overcome the obstacles associated with the continuous cropping of Panax notoginseng. Previous studies have shown that Bacillus subtilis inhibits pathogenic fungi in the rhizosphere of Panax notoginseng, but the inhibitory effect was not stable. Therefore, we hope to introduce biochar to help Bacillus subtilis colonize in soil. In the experiment, fields planted with Panax notoginseng for 5 years were renovated, and biochar was mixed in at the same time. The applied amount of biochar was set to four levels (B0, 10 kg·hm-2; B1, 80 kg·hm-2; B2, 110 kg·hm-2; B3, 140 kg·hm-2), and Bacillus subtilis biological agent was set to three levels (C1, 10 kg·hm-2; C2, 15 kg·hm-2; C3, 25 kg·hm-2). The full combination experiment and a blank control group (CK) were used. The experimental results show that the overall Ascomycota decreased by 0.86%~65.68% at the phylum level. Basidiomycota increased by -73.81%~138.47%, and Mortierellomycota increased by -51.27%~403.20%. At the genus level, Mortierella increased by -10.29%~855.44%, Fusarium decreased by 35.02%~86.79%, and Ilyonectria increased by -93.60%~680.62%. Fusarium mainly causes acute bacterial wilt root rot, while Ilyonectria mainly causes yellow rot. Under different treatments, the Shannon index increased by -6.77%~62.18%, the Chao1 index increased by -12.07%~95.77%, the Simpson index increased by -7.31%~14.98%, and the ACE index increased by -11.75%~96.12%. The good_coverage indices were all above 0.99. The results of a random forest analysis indicated that Ilyonectria, Pyrenochaeta, and Xenopolyscytalum were the top three most important species in the soil, with MeanDecreaseGini values of 2.70, 2.50, and 2.45, respectively. Fusarium, the primary pathogen of Panax notoginseng, ranked fifth, and its MeanDecreaseGini value was 2.28. The experimental results showed that the B2C2 treatment had the best inhibitory effect on Fusarium, and the relative abundance of Fusarium in Panax notoginseng rhizosphere soil decreased by 86.79% under B2C2 treatment; the B1C2 treatment had the best inhibitory effect on Ilyonectria, and the relative abundance of Ilyonectria in the Panax notoginseng rhizosphere soil decreased by 93.60% under B1C2 treatment. Therefore, if we want to improve the soil with acute Ralstonia solanacearum root rot, we should use the B2C2 treatment to improve the soil environment; if we want to improve the soil with yellow rot disease, we should use the B1C2 treatment to improve the soil environment.

16.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621909

ABSTRACT

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Subject(s)
Brain Ischemia , Panax notoginseng , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Saponins , Triterpenes , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , von Willebrand Factor , Angiogenesis , Network Pharmacology , Rats, Sprague-Dawley , Saponins/pharmacology , Brain Ischemia/drug therapy , Cerebral Infarction
17.
Front Pharmacol ; 15: 1353662, 2024.
Article in English | MEDLINE | ID: mdl-38576488

ABSTRACT

Purpose: This study aimed to assess the efficacy and safety of Panax notoginseng saponin (PNS) injection, when combined with conventional treatment (CT), for acute myocardial infarction (AMI). Methods: Comprehensive searches were conducted in seven databases from inception until 28 September 2023. The search aimed to identify relevant randomized controlled trials (RCTs) focusing on PNS injection in the context of AMI. This meta-analysis adhered to the PRISMA 2020 guidelines, and its protocol was registered with PROSPERO (number: CRD42023480131). Result: Twenty RCTs involving 1,881 patients were included. The meta-analysis revealed that PNS injection, used adjunctively with CT, significantly improved treatment outcomes compared to CT alone, as evidenced by the following points: (1) enhanced total effective rate [OR = 3.09, p < 0.05]; (2) decreased incidence of major adverse cardiac events [OR = 0.32, p < 0.05]; (3) reduction in myocardial infarct size [MD = -6.53, p < 0.05]; (4) lower ST segment elevation amplitude [MD = -0.48, p < 0.05]; (5) mitigated myocardial injury as indicated by decreased levels of creatine kinase isoenzymes [MD = -11.19, p < 0.05], cardiac troponin T [MD = -3.01, p < 0.05], and cardiac troponin I [MD = -10.72, p < 0.05]; (6) enhanced cardiac function, reflected in improved brain natriuretic peptide [MD = -91.57, p < 0.05], left ventricular ejection fraction [MD = 5.91, p < 0.05], left ventricular end-diastolic dimension [MD = -3.08, p < 0.05], and cardiac output [MD = 0.53, p < 0.05]; (7) reduced inflammatory response, as shown by lower levels of C-reactive protein [MD = -2.99, p < 0.05], tumor necrosis factor-α [MD = -6.47, p < 0.05], interleukin-6 [MD = -24.46, p < 0.05], and pentraxin-3 [MD = -2.26, p < 0.05]; (8) improved vascular endothelial function, demonstrated by decreased endothelin-1 [MD = -20.56, p < 0.05] and increased nitric oxide [MD = 1.33, p < 0.05]; (9) alleviated oxidative stress, evidenced by increased superoxide dismutase levels [MD = 25.84, p < 0.05]; (10) no significant difference in adverse events [OR = 1.00, p = 1.00]. Conclusion: This study highlighted the efficacy and safety of adjunctive PNS injections in enhancing AMI patient outcomes beyond CT alone. Future RCTs need to solidify these findings through rigorous methods. Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/), identifier (CRD42023480131).

18.
BMC Complement Med Ther ; 24(1): 144, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575939

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS: PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION: PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.


Subject(s)
Alzheimer Disease , Panax notoginseng , Saponins , Humans , Mice , Animals , Infant , Panax notoginseng/chemistry , Saponins/pharmacology , Mitophagy , Oxidative Stress , Brain/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA, Messenger/metabolism
19.
Talanta ; 274: 125968, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38581849

ABSTRACT

Panax notoginseng (P. notoginseng), a Chinese herb containing various saponins, benefits immune system in medicines development, which from Wenshan (authentic cultivation) is often counterfeited by others for large demand and limited supply. Here, we proposed a method for identifying P. notoginseng origin combining terahertz (THz) precision spectroscopy and neural network. Based on the comparative analysis of four qualitative identification methods, we chose high-performance liquid chromatography (HPLC) and THz spectroscopy to detect 252 samples from five origins. After classifications using Convolutional Neural Networks (CNNs) model, we found that the performance of THz spectra was superior to that of HPLC. The underlying mechanism is that there are clear nonlinear relations among the THz spectra and the origins due to the wide spectra and multi-parameter characteristics, which makes the accuracy of five-classification origin identification up to 97.62%. This study realizes the rapid, non-destructive and accurate identification of P. notoginseng origin, providing a practical reference for herbal medicine.


Subject(s)
Neural Networks, Computer , Panax notoginseng , Terahertz Spectroscopy , Panax notoginseng/chemistry , Terahertz Spectroscopy/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Algorithms
20.
COPD ; 21(1): 2329282, 2024 12.
Article in English | MEDLINE | ID: mdl-38622983

ABSTRACT

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Subject(s)
Panax notoginseng , Pulmonary Disease, Chronic Obstructive , Saponins , Rats , Animals , Saponins/pharmacology , Saponins/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , NF-kappa B/metabolism , Panax notoginseng/metabolism , Toll-Like Receptor 4/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Remodeling , Lung , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...