Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 21(1): 420, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34517831

ABSTRACT

BACKGROUND: Natural rubber (cis-1,4-polyioprene, NR) is an indispensable industrial raw material obtained from the Pará rubber tree (H. brasiliensis). Natural rubber cannot be replaced by synthetic rubber compounds because of the superior resilience, elasticity, abrasion resistance, efficient heat dispersion, and impact resistance of NR. In NR production, latex is harvested by periodical tapping of the trunk bark. Ethylene enhances and prolongs latex flow and latex regeneration. Ethephon, which is an ethylene-releasing compound, applied to the trunk before tapping usually results in a 1.5- to 2-fold increase in latex yield. However, intense mechanical damage to bark tissues by excessive tapping and/or over-stimulation with ethephon induces severe oxidative stress in laticifer cells, which often causes tapping panel dryness (TPD) syndrome. To enhance NR production without causing TPD, an improved understanding of the molecular mechanism of the ethylene response in the Pará rubber tree is required. Therefore, we investigated gene expression in response to ethephon treatment using Pará rubber tree seedlings as a model system. RESULTS: After ethephon treatment, 3270 genes showed significant differences in expression compared with the mock treatment. Genes associated with carotenoids, flavonoids, and abscisic acid biosynthesis were significantly upregulated by ethephon treatment, which might contribute to an increase in latex flow. Genes associated with secondary cell wall formation were downregulated, which might be because of the reduced sugar supply. Given that sucrose is an important molecule for NR production, a trade-off may arise between NR production and cell wall formation for plant growth and for wound healing at the tapping panel. CONCLUSIONS: Dynamic changes in gene expression occur specifically in response to ethephon treatment. Certain genes identified may potentially contribute to latex production or TPD suppression. These data provide valuable information to understand the mechanism of ethylene stimulation, and will contribute to improved management practices and/or molecular breeding to attain higher yields of latex from Pará rubber trees.


Subject(s)
Ethylenes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Hevea/genetics , Hevea/metabolism , Latex/metabolism , Seedlings/genetics , Seedlings/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Genes, Plant , Indonesia
2.
Molecules ; 25(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153210

ABSTRACT

Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants are poorly known, the present study reports detailed compound lipid composition, focusing on phospholipids and galactolipids in the latex and rubber particles of the plants. In the fresh latex and rubber particles of both plants, phospholipids were much more dominant (85-99%) compared to galactolipids. Among the nine classes of phospholipids, phosphatidylcholines (PCs) were most abundant, at ~80%, in both plants. Among PCs, PC (36:4) and PC (34:2) were most abundant in the rubber tree and rubber dandelion, respectively. Two classes of galactolipids, monogalactosyl diacylglycerol and digalactosyl diacylglycerol, were detected as 12% and 1%, respectively, of total compound lipids in rubber tree, whereas their percentages in the rubber dandelion were negligible (< 1%). Overall, the compound lipid composition differed only slightly between the fresh latex and the rubber particles of both rubber plants. These results provide fundamental data on the lipid composition of rubber particles in two rubber-producing plants, which can serve as a basis for artificial rubber particle production in the future.


Subject(s)
Hevea/chemistry , Latex/chemistry , Lipids/chemistry , Taraxacum/chemistry
3.
New Phytol ; 206(2): 709-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581169

ABSTRACT

In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.


Subject(s)
Hevea/enzymology , Sucrose/metabolism , beta-Fructofuranosidase/metabolism , Amino Acid Sequence , Cytosol/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hevea/cytology , Hevea/genetics , Latex/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/cytology , Plant Stems/enzymology , Plant Stems/genetics , Sequence Alignment , beta-Fructofuranosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL