Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Publication year range
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1235-1241, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38151948

ABSTRACT

Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.


Subject(s)
Brain-Computer Interfaces , Humans , Electroencephalography/methods , Brain/physiology , Artificial Intelligence , Photic Stimulation/methods
3.
Journal of Biomedical Engineering ; (6): 1235-1241, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008955

ABSTRACT

Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.


Subject(s)
Humans , Brain-Computer Interfaces , Electroencephalography/methods , Brain/physiology , Artificial Intelligence , Photic Stimulation/methods
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(1): 198-206, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35231982

ABSTRACT

Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.


Subject(s)
Brain-Computer Interfaces , Magnetoencephalography , Brain/physiology , Electroencephalography , Humans , Imagery, Psychotherapy , Technology
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928215

ABSTRACT

Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.


Subject(s)
Humans , Brain/physiology , Brain-Computer Interfaces , Electroencephalography , Imagery, Psychotherapy , Magnetoencephalography , Technology
6.
Front Neurosci ; 10: 1, 2016.
Article in English | MEDLINE | ID: mdl-26858586

ABSTRACT

The present study describes the development of a neurocognitive paradigm: "Assessing Neurocognition via Gamified Experimental Logic" (ANGEL), for performing the parametric evaluation of multiple neurocognitive functions simultaneously. ANGEL employs an audiovisual sensory motor design for the acquisition of multiple event related potentials (ERPs)-the C1, P50, MMN, N1, N170, P2, N2pc, LRP, P300, and ERN. The ANGEL paradigm allows assessment of 10 neurocognitive variables over the course of three "game" levels of increasing complexity ranging from simple passive observation to complex discrimination and response in the presence of multiple distractors. The paradigm allows assessment of several levels of rapid decision making: speeded up response vs. response-inhibition; responses to easy vs. difficult tasks; responses based on gestalt perception of clear vs. ambiguous stimuli; and finally, responses with set shifting during challenging tasks. The paradigm has been tested using 18 healthy participants from both sexes and the possibilities of varied data analyses have been presented in this paper. The ANGEL approach provides an ecologically valid assessment (as compared to existing tools) that quickly yields a very rich dataset and helps to assess multiple ERPs that can be studied extensively to assess cognitive functions in health and disease conditions.

SELECTION OF CITATIONS
SEARCH DETAIL