Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38918882

ABSTRACT

The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.


Subject(s)
Fishes , Polymorphism, Single Nucleotide , Animals , Fishes/genetics , Atlantic Ocean , Adaptation, Physiological/genetics , Saline Waters
2.
Integr Comp Biol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724441

ABSTRACT

Constraints on phenotypic evolution can lead to patterns of convergent evolution, by limiting the 'pool' of potential phenotypes in the face of endogenous (functional, developmental) or exogenous (competition, predation) selective pressures. Evaluation of convergence depends on integrating ecological and morphological data within a robust, comparative phylogenetic context. The staggering diversity of teleost fishes offers a multitude of lineages adapted for similar ecological roles, and therefore, offers numerous replicated evolutionary experiments for exploring phenotypic convergence. However, our understanding of fish feeding systems has been primarily shaped by marine species, with the monolithic exception of freshwater cichlids. Here we use piranhas and pacus (Serrasalmidae) to explore the evolution of different feeding ecologies and their morphological proxies in Neotropical freshwater environments. Specifically, we explore whether convergence is more widespread among plant-eating fishes, arising from strong constraints on phenotypic evolution in herbivores. Using osteological micro-computed tomographic imaging (µCT), we describe the major axes of morphological variation in pacus and piranhas, regarding their diet and feeding behaviors. Next, we evaluated whether herbivorous niches are less labile than other dietary guilds and whether herbivorous species' phenotypes evolve at a slower evolutionary rate than other taxa. We then assess how convergent herbivorous taxa are, using three different suites of morphological characters (dental, jaw, and abdominal morphometrics). Ecologically, herbivory is not a dead end, exhibiting similar observed transition rates as those between carnivores and omnivores. However, we documented widespread convergence in herbivores and that herbivores have slower rates of phenotypic evolution than carnivores. Most instances of convergence are found in herbivorous taxa, specifically in frugivores and folivores. Moreover, instances of 'complete' convergence, indicated by positive convergence metrics observed in more than one morphometric dataset, were only found in herbivores. Herbivores do appear to evolve under constrained circumstances, but this has not limited their ecological lability.

4.
Cureus ; 16(2): e55173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38558684

ABSTRACT

Introduction The goal of total knee arthroplasty is to replace diseased cartilage and bone with an artificial implant to improve the patient's quality of life. The knee has historically been reconstructed to the patient's mechanical axis (MA). However, kinematically aligned techniques have been increasingly used. Kinematic alignment requires less soft-tissue resection and aligns the knee with what is anatomically natural to the patient, while there is concern that kinematically aligned knees will lead to earlier failure due to potential unequal weight distribution on the implant. The purpose of this study is to compare the parallelism from the floor of the joint-line cuts using kinematic and mechanical alignment and understand if the MA is a proper estimation of the tibial-ankle axis (TA). Methods A retrospective study was conducted by recruiting all high tibial osteotomy and distal femoral osteotomy recipients operated on by two surgeons in two MedStar Health hospitals from 01/2013 to 07/2020 with full-length films in preparation for restorative procedures. Baseline osteoarthritis was graded using the Kellgren-Lawrence classification system with all patients presenting as Grade 0. The TA and the joint-line orientations of the MA and kinematic axis (KA) were measured on 66 legs. The average distance from parallelism to the ground was compared between the MA and the KA and between the MA and the TA using a paired t-test. Results KA joint-line orientation (1.705° deviation) was more parallel to the floor in the bipedal stance phase than the MA (2.316° deviation, p=0.0156). The MA (2.316° deviation) was not a proper estimation of the TA (4.278° deviation, p=0.0001). Conclusion By utilizing the KA technique, the restoration of the natural joint line, as well as a joint that is more parallel to the floor in the stance phase compared to the MA, is achieved. The parallelism to the ground of the KA during the bipedal stance phase suggests an even load distribution across the knee. In addition, due to its similarity to the KA and anatomical significance in weight-bearing distribution, further investigation into the hip-to-calcaneal axis as an approximation of the joint line is warranted.

5.
Sci Rep ; 14(1): 8645, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622153

ABSTRACT

Image recognition technology belongs to an important research field of artificial intelligence. In order to enhance the application value of image recognition technology in the field of computer vision and improve the technical dilemma of image recognition, the research improves the feature reuse method of dense convolutional network. Based on gradient quantization, traditional parallel algorithms have been improved. This improvement allows for independent parameter updates layer by layer, reducing communication time and data volume. The introduction of quantization error reduces the impact of gradient loss on model convergence. The test results show that the improvement strategy designed by the research improves the model parameter efficiency while ensuring the recognition effect. Narrowing the learning rate is conducive to refining the updating granularity of model parameters, and deepening the number of network layers can effectively improve the final recognition accuracy and convergence effect of the model. It is better than the existing state-of-the-art image recognition models, visual geometry group and EfficientNet. The parallel acceleration algorithm, which is improved by the gradient quantization, performs better than the traditional synchronous data parallel algorithm, and the improvement of the acceleration ratio is obvious. Compared with the traditional synchronous data parallel algorithm and stale synchronous parallel algorithm, the optimized parallel acceleration algorithm of the study ensures the image data training speed and solves the bottleneck problem of communication data. The model designed by the research improves the accuracy and training speed of image recognition technology and expands the use of image recognition technology in the field of computer vision.Please confirm the affiliation details of [1] is correct.The relevant detailed information in reference [1] has been confirmed to be correct.

6.
Math Biosci Eng ; 21(2): 2568-2586, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38454696

ABSTRACT

With the continuous development of mobile robot technology, its application fields are becoming increasingly widespread, and path planning is one of the most important topics in the field of mobile robot research. This paper focused on the study of the path planning problem for mobile robots in a complex environment based on the ant colony optimization (ACO) algorithm. In order to solve the problems of local optimum, susceptibility to deadlocks, and low search efficiency in the traditional ACO algorithm, a novel parallel ACO (PACO) algorithm was proposed. The algorithm constructed a rank-based pheromone updating method to balance exploration space and convergence speed and introduced a hybrid strategy of continuing to work and killing directly to address the problem of deadlocks. Furthermore, in order to efficiently realize the path planning in complex environments, the algorithm first found a better location for decomposing the original problem into two subproblems and then solved them using a parallel programming method-single program multiple data (SPMD)-in MATLAB. In different grid map environments, simulation experiments were carried out. The experimental results showed that on grid maps with scales of 20 $ \times $ 20, 30 $ \times $ 30, and 40 $ \times $ 40 compared to nonparallel ACO algorithms, the proposed PACO algorithm had less loss of solution accuracy but reduced the average total time by 50.71, 46.83 and 46.03%, respectively, demonstrating good solution performance.

7.
Sensors (Basel) ; 24(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38544210

ABSTRACT

Graphics processing units (GPUs) facilitate massive parallelism and high-capacity storage, and thus are suitable for the iterative reconstruction of ultrahigh-resolution micro computed tomography (CT) scans by on-the-fly system matrix (OTFSM) calculation using ordered subsets expectation maximization (OSEM). We propose a finite state automaton (FSA) method that facilitates iterative reconstruction using a heterogeneous multi-GPU platform through parallelizing the matrix calculations derived from a ray tracing system of ordered subsets. The FSAs perform flow control for parallel threading of the heterogeneous GPUs, which minimizes the latency of launching ordered-subsets tasks, reduces the data transfer between the main system memory and local GPU memory, and solves the memory-bound of a single GPU. In the experiments, we compared the operation efficiency of OS-MLTR for three reconstruction environments. The heterogeneous multiple GPUs with job queues for high throughput calculation speed is up to five times faster than the single GPU environment, and that speed up is nine times faster than the heterogeneous multiple GPUs with the FIFO queues of the device scheduling control. Eventually, we proposed an event-triggered FSA method for iterative reconstruction using multiple heterogeneous GPUs that solves the memory-bound issue of a single GPU at ultrahigh resolutions, and the routines of the proposed method were successfully executed on each GPU simultaneously.

8.
Front Endocrinol (Lausanne) ; 15: 1336123, 2024.
Article in English | MEDLINE | ID: mdl-38419958

ABSTRACT

Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Diabetic Retinopathy , Kidney Failure, Chronic , Adult , Humans , Diabetic Nephropathies/pathology , Diabetic Retinopathy/pathology , Kidney/pathology
9.
Heliyon ; 10(4): e26123, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375295

ABSTRACT

To meet the demand for the track's geometric parameter detection equipment for train speed and high-speed aerodynamics tests, a zero-calibration gauge device is designed with the centering limit, height adjustment and horizontal display function in this paper. The bending situation of the zero-calibration gauge is analyzed and the processing technology is studied, which ensures the rationality and realizability of the design of zero-calibration gauge. Then the gauge zero value and the parallelism of the working surface of zero-calibration gauge have been experimentally tested. The experimental results show that the parameter of gauge zero value is 1434.829 mm with a standard deviation of 1.4 µm. The parallelism of the two upper working surfaces is 1.1 µm, and the parallelism of the two inner working surfaces is 4 µm. Finally, the uncertainty evaluation of zero-calibration gauge is completed. The measurement uncertainty of gauge zero value is 12 µm and the measurement uncertainty of height difference is 6 µm.

10.
Philos Trans R Soc Lond B Biol Sci ; 379(1895): 20220424, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38104607

ABSTRACT

Poetic diction routinely involves two complementary classes of features: (i) parallelisms, i.e. repetitive patterns (rhyme, metre, alliteration, etc.) that enhance the predictability of upcoming words, and (ii) poetic deviations that challenge standard expectations/predictions regarding regular word form and order. The present study investigated how these two prediction-modulating fundamentals of poetic diction affect the cognitive processing and aesthetic evaluation of poems, humoristic couplets and proverbs. We developed quantitative measures of these two groups of text features. Across the three text genres, higher deviation scores reduced both comprehensibility and aesthetic liking whereas higher parallelism scores enhanced these. The positive effects of parallelism are significantly stronger than the concurrent negative effects of the features of deviation. These results are in accord with the hypothesis that art reception involves an interplay of prediction errors and prediction error minimization, with the latter paving the way for processing fluency and aesthetic liking. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.


Subject(s)
Emotions , Mental Processes , Esthetics
11.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961195

ABSTRACT

Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.

12.
Ann Bot ; 132(6): 1055-1072, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37814841

ABSTRACT

BACKGROUND: A general view in the study of pollination syndromes is that floral traits usually represent convergent floral adaptations to specific functional pollinator groups. However, the definition of convergence is elusive and contradictory in the literature. Is convergence the independent evolution of either the same trait or similar traits with the same function? A review of the concept of convergence in developmental biology and phylogenetic systematics may shed new light in studies of pollination syndromes. SCOPE: The aims of this article are (1) to explore the notion of convergence and other concepts (analogy, homoplasy and parallelism) within the theory and practice of developmental evolution and phylogenetic systematics; (2) to modify the definitions of syndromes in order to embrace the concepts of analogy and convergence; (3) to revisit the bat pollination syndrome in the context of angiosperm phylogeny, with focus on the showy 'petaloid' organs associated with the syndrome; (4) to revisit the genetic-developmental basis of flower colour; (5) to raise evolutionary hypotheses of floral evolution associated with the bat pollination syndrome; and (6) to highlight some of the current frontiers of research on the origin and evolution of flowers and its impact on pollination syndrome studies in the 21st century. CONCLUSIONS: The inclusion of the concepts of analogy and convergence within the concept of syndromes will constitute a new agenda of inquiry that integrates floral biology, phylogenetic systematics and developmental biology. Phyllostomid and pteropodid bat pollination syndrome traits in eudicots and monocots represent cases of analogous and convergent evolution. Pollination syndromes are a multivariate concept intrinsically related to the understanding of flower organogenesis and evolution. The formulation of hypotheses of pollination syndromes must consider the phylogenetic levels of universality for both plant and animal taxa, flower development, genetics, homology and evolution, and a clear definition of evolutionary concepts, including analogy, convergence, homoplasy and parallelism.


Subject(s)
Chiroptera , Pollination , Animals , Phylogeny , Chiroptera/genetics , Phenotype , Reproduction , Flowers/genetics
13.
Bioanalysis ; 15(21): 1277-1286, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37737130

ABSTRACT

Aim: To investigate the impact of sample replication number (duplicate vs triplicate) on the validation of ELISA methodology. Materials & methods: The methodology was validated with reference sample and test sample as an 11-point triplicate dilution series. The data were reanalyzed post-validation as if conducted as a duplicate dilution series. Results: The triplicate methodology was validated with a precision of 5.3% and mean bias of -1.7%. The duplicate methodology generated a precision of 5.7% and mean bias of -2.2%. Conclusion: Both the triplicate (method capability index = 1.37) and duplicate (method capability index = 1.25) ELISA methodology can support an 80-125% relative potency specification with a 0.004% or 0.018% probability of out-of-specification results, respectively.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunosorbent Assay/methods
14.
mSystems ; 8(5): e0054823, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37768063

ABSTRACT

IMPORTANCE: Biofilm formation is a vital factor for the survival and adaptation of bacteria in diverse environmental niches. Experimental evolution combined with the advancement of whole-population genome sequencing provides us a powerful tool to understand the genomic dynamic of evolutionary adaptation to different environments, such as during biofilm development. Previous studies described the genetic and phenotypic changes of selected clones from experimentally evolved Bacillus thuringiensis and Bacillus subtilis that were adapted under abiotic and biotic biofilm conditions. However, the full understanding of the dynamic evolutionary landscapes was lacking. Furthermore, the differences and similarities of adaptive mechanisms in B. thuringiensis and B. subtilis were not identified. To overcome these limitations, we performed longitudinal whole-population genome sequencing to study the underlying genetic dynamics at high resolution. Our study provides the first comprehensive mutational landscape of two bacterial species' biofilms that is adapted to an abiotic and biotic surface.


Subject(s)
Bacillus thuringiensis , Biofilms , Mutation , Bacillus subtilis/genetics , Genomics
15.
Front Surg ; 10: 1219816, 2023.
Article in English | MEDLINE | ID: mdl-37609000

ABSTRACT

Research objective: To propose a technique for placing pedicle screws in the thoracic spine using the Supraspinous ligament Arc Tangent (SLAT) as a guide to increase the safety and stability of screw placement. Content and methods: A retrospective analysis of postoperative anteroposterior and lateral x-ray images was performed for 118 patients with thoracic spine diseases who received conventional freehand technique from January 2016 to May 2020 and SLAT-guided technique since June 2020 to present. The diagnoses included thoracic spinal stenosis, deformity, fractures, infections, and tumors. The angle between the screw and the upper endplate was categorized as grade 1 (0°-5°), grade 2 (5°-10°), and grade 3 (>10°). Three surgeons with more than 10 years of experience in spinal surgery measured the angle between the screw and the upper endplate in the lateral view. Chi-square test was used for statistical analysis, and p < 0.05 was considered statistically significant. Results: A total of 1315 pedicle screws were placed from T1 to T12 in all patients. In the conventional freehand technique group, 549 screws were grade 1, 35 screws were grade 2, and 23 screws were grade 3. In the SLAT-guided freehand technique group, 685 screws were grade 1, 15 screws were grade 2, and 8 screws were grade 3. The data of each group was p < 0.05 by Chi-squared test, which was statistically significant, indicating that the SLAT-guided freehand technique resulted in a higher rate of parallelism between the screws and the upper endplate. All patients underwent intraoperative neurophysiological monitoring, immediate postoperative neurological examination, postoperative x-ray examination, and assess the eventual recovery. The screws were safe and stable, and no complications related to pedicle screw placement were found. Conclusion: The SLAT-guided freehand technique for placing pedicle screws in the thoracic spine can achieve a higher rate of screw-upper endplate parallelism, making screw placement safer and more accurate. Our method provides a convenient and reliable technique for most spinal surgeons, allowing for increased accuracy and safety with less fluoroscopic guidance.

16.
Biomed Chromatogr ; 37(10): e5713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544926

ABSTRACT

In pharmacokinetic studies for respiratory diseases, urea is a commonly used dilution marker for volume normalization of various biological matrices, owing to the fact that urea diffuses freely throughout the body and is minimally affected by disease states. In this study, we developed a convenient liquid chromatography-tandem mass spectrometry (LC-MS/MS) surrogate matrix assay for accurate urea quantitation in plasma, serum and epithelial lining fluid. Different mass spectrometer platforms and ionization modes were compared in parallel. The LC method and mass spectrometer parameters were comprehensively optimized to reduce interferences, to smooth the baseline and to maximize the signal-to-noise ratio. Saline was selected as the surrogate matrix, and its suitability was confirmed by good parallelism and accurate quality control sample measurements. Reliable and robust assay performance was demonstrated by precision and accuracy, dilution integrity, sensitivity, recovery and stability, all of which met bioanalysis requirements to support clinical studies. The assay performance was also verified and better understood by comparing it with a colorimetric assay and to a surrogate analyte assay. The newly developed surrogate matrix assay has the potential to be further expanded for urea quantitation in numerous physiological matrices.


Subject(s)
Respiratory Tract Diseases , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Quality Control , Urea , Reproducibility of Results
17.
Entropy (Basel) ; 25(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37372192

ABSTRACT

The phasmatodea population evolution algorithm (PPE) is a recently proposed meta-heuristic algorithm based on the evolutionary characteristics of the stick insect population. The algorithm simulates the features of convergent evolution, population competition, and population growth in the evolution process of the stick insect population in nature and realizes the above process through the population competition and growth model. Since the algorithm has a slow convergence speed and falls easily into local optimality, in this paper, it is mixed with the equilibrium optimization algorithm to make it easier to avoid the local optimum. Based on the hybrid algorithm, the population is grouped and processed in parallel to accelerate the algorithm's convergence speed and achieve better convergence accuracy. On this basis, we propose the hybrid parallel balanced phasmatodea population evolution algorithm (HP_PPE), and this algorithm is compared and tested on the CEC2017, a novel benchmark function suite. The results show that the performance of HP_PPE is better than that of similar algorithms. Finally, this paper applies HP_PPE to solve the AGV workshop material scheduling problem. Experimental results show that HP_PPE can achieve better scheduling results than other algorithms.

18.
Heliyon ; 9(5): e15663, 2023 May.
Article in English | MEDLINE | ID: mdl-37153393

ABSTRACT

In the current paper, path deviation equations in absolutely parametric parallel geometries are derived. It is considered as a geodesic deviation equation. Additionally, it is modified by a torsion term. It proposes the deviation path equation that describes the trajectory deviation of a particle under the influence of the gravitational field. To examine the singularity of the Cosmological models, the modified version of the Raychaudhuri equation is utilized. The generalized law of the variation of Hubble's parameter is utilized to achieve some Cosmological models.

19.
Front Vet Sci ; 10: 1160200, 2023.
Article in English | MEDLINE | ID: mdl-37215470

ABSTRACT

Adequate radiographic positioning on the X-ray table is paramount for canine hip dysplasia (HD) screening. The aims of this study were to evaluate femoral parallelism on normal ventrodorsal hip extended (VDHE) view and the effect of femoral angulation (FA) on Norberg Angle (NA) and Hip Congruency Index (HCI). The femoral parallelism was evaluated comparing the alignment of the long femoral axis with the long body axis in normal VDHE views and the effect of FA on NA and HCI on repeated VDHE views with different levels of FA. The femoral long axis in normal VDHE views showed a ranged of FA from -4.85° to 5.85°, mean ± standard deviation (SD) of -0.06 ± 2.41°, 95% CI [-4.88, 4.76°]. In the paired views, the mean ± SD femur adduction of 3.69 ± 1.96° led to a statistically significant decrease NA, and HCI, and femur abduction of 2.89 ± 2.12 led to a statistically significant increase in NA and HCI (p < 0.05). The FA differences were also significantly correlated with both NA differences (r = 0.83) and HCI differences (r = 0.44) (p < 0.001). This work describes a methodology that allows evaluation of femoral parallelism in VDHE views and the results suggest that femur abduction yielded more desirable NA and HCI values and adduction impaired NA and HCI values. The positive linear association of FA with NA and HCI allows the use of regression equations to create corrections, to reduce the influence of poor femoral parallelism in the HD scoring.

20.
Philos Trans R Soc Lond B Biol Sci ; 378(1877): 20220047, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37004728

ABSTRACT

Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.


Subject(s)
Biological Evolution , Ecology , Humans , Biota , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...