ABSTRACT
In 2019, the Brumadinho dam rupture released a massive amount of iron ore mining tailings into the Paraopeba River. Up to now, it remains a public health issue for the local and downstream populations. The present study aims to assess the behavior and fate of metal contamination following the disaster. Using new sampling strategies and up-to-date geochemistry tools, we show that the dissolved metal concentrations (< 0.22 µm cutoff filtration) remained low in the Paraopeba River. Although the tailings present high metal concentrations (Fe, Mn, Cd, and As), the high local background contents of metals and other previous anthropogenic contamination hamper tracing the sediment source based only on the geochemical signature. The Pb isotopic composition coupled with the metals enrichment factor of sediments and Suspended Particulate Matter (SPM) constitutes accurate proxies that trace the fate and dispersion of tailing particles downstream of the dam collapse. This approach shows that 1) The influence of the released tailing was restricted to the Paraopeba River and the Retiro Baixo reservoir, located upstream of the São Francisco River; 2) The tailings' contribution to particulate load ranged from 17 % to 88 % in the Paraopeba River; 3) Other regional anthropogenic activities also contribute to water and sediment contamination of the Paraopeba river.
ABSTRACT
The rupture of mine-tailings dams can severely contaminate rivers, because released tailings can interact with water for years keeping contaminant concentrations high. The general purpose of this study was to examine the rupture of B1 tailings dam in Ferro-Carvão stream (municipality of Brumadinho, state of Minas Gerais, Brazil), which occurred in 25 January 2019 and contaminated the main water course (Paraopeba River) with 2.8 Mm3 of metal-rich tailings. The specific purpose was to assess the percentage of non-conforming concentrations following the event, considering the Normative Deliberation COPAM/CERH-MG no. 1. The results showed non-conforming aluminum, iron, manganese, lead, phosphorus and turbidity concentrations, clearly above pre-rupture averages, especially in the rainy period. The catastrophe triggered the suspension of Paraopeba River as drinking water source to the Metropolitan Region of Belo Horizonte (BHMR; 6 million people). Since then, the supply to the BHMR became an everyday challenge to water management authorities, because the Paraopeba source represented a 30% share. Mitigation measures are therefore urgently needed. As complementary objective to this study, we aimed to verify the possibility to restore drinking water supply through conventional treatment. The treatability of Paraopeba River water was assessed by the Raw Water Quality Index considering the rainy and dry periods in separate. The results suggested the possibility to lift up the suspension in the dry period, improving the regional water security. Considering the huge dataset on which this study is standing, our results are generalizable to similar events with sparser information.
Subject(s)
Drinking Water , Water Pollutants, Chemical , Brazil , Environmental Monitoring , Humans , Rivers , Water Pollutants, Chemical/analysis , Water SupplyABSTRACT
Rupture of dam B-1 at the Córrego do Feijão mine in Brumadinho, state of Minas Gerais, Brazil (25/Jan/2019) contaminated the Paraopeba River with mine waste. To identify the adverse effects of this event on public and environmental health, we conducted the Fish Embryo Acute Toxicity (FET) test (OECD No. 236). During the tests, zebrafish embryos were exposed for 144 hours to solutions containing realistic concentrations of dissolved iron and aluminum and total manganese at the following analysis points upstream or downstream of the dam: 10 km, upstream; 19.7 km, downstream, at the point where water for consumption is collected; 24.5 km, downstream, in the city of Mário Franco; and 59 km, downstream, on the border between the towns of Juatuba and Betim. Metal concentrations were taken from September 2019 report No. 53 released by IGAM. Mortality was high at all exposure points and reached 93% at the Juatuba/Betim point. We also detected lethal, sublethal and teratogenic effects, such as non-hatching, non-inflation of the swim bladder, pericardial edema and scoliosis, affecting up to 25% of embryos at the other analysis points. The results highlight the need for continuous monitoring of the water quality of the Paraopeba River.
Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Brazil , Environmental Monitoring , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity , Water QualityABSTRACT
This study describes the application of gas chromatography coupled to mass spectrometry (GC-MS) to evaluate the occurrence of 12 CECs-contaminants of emerging concern (bisphenol A, diclofenac, 17ß-estradiol, estriol, estrone, 17α-ethinylestradiol, gemfibrozil, ibuprofen, naproxen, 4-nonylphenol, 4-octylphenol, and acetaminophen) in surface waters from Paraopeba River Basin, Minas Gerais State, Brazil. The analytical procedure was validated and applied to 60 surface water samples collected across four sampling campaigns along the upper and middle watershed. Methods for CECs determination involved sample filtration, and solid-phase extraction (SPE) with subsequent derivatization of the target compounds prior to their analysis by GC-MS. The LOQ varied from 3.6 to 14.4 ng/L and extraction recoveries ranged from 46.1 to 107.1% for the lowest spiked concentration level (10 ng/L). The results showed a profile of spatial distribution of compounds, as well as the influence of rainfall. Ibuprofen (1683.9 ng/L), bisphenol (1587.7 ng/L), and naproxen (938.4 ng/L) occurred in higher concentrations during the rainy season, whereas during the dry season, the concentrations of bisphenol (1057.7 ng/L), estriol (991.0 ng/L), and estrone (978.4 ng/L) were highlighted. The risk assessment of human exposure shows that for most contaminants, the concentration is well below the estimated thresholds for chronic toxicity from water intake. However, estradiol and 17α-ethinylestradiol showed concentrations in the same order of magnitude as the guide values estimated for babies.
Subject(s)
Rivers , Water Pollutants, Chemical , Brazil , Environmental Monitoring , Humans , Risk Assessment , Seasons , Water Pollutants, Chemical/analysisABSTRACT
Environmental disasters affecting Brazilian rivers have been frequent recently, especially involving mining activities. Two recent dam-rupture events suddenly released millions of cubic meters of iron tailings downstream into two major Brazilian watersheds. These events generated major losses to the environment and human life. Additionally, the biodiversity in both watersheds was still incompletely known. Two new species of the armoured catfish genus Hypostomus were discovered in the Rio Paraopeba and surrounding rivers of the Rio São Francisco Basin. The species share some main characteristics including a depressed body, large dark spots on a clearer background and the absence of keels on flanks. However, while one species (Hypostomus freirei sp. n.) has a large mandibular ramus and numerous slender teeth, the other (Hypostomus guajupia sp. n.) has a shorter mandibular ramus and few robust teeth. The discovery of these two new mid-sized fish species emphasizes the presumption that the effects of major environmental disasters cannot be fully estimated as local biodiversity is not completely known. This discovery in a recently devastated area also shows that tough environmental laws for the protection, supervision and mitigation of major impacts are urgently needed in developing countries.
Subject(s)
Biodiversity , Catfishes/anatomy & histology , Catfishes/classification , Animals , Brazil , Disasters , Mandible/anatomy & histology , Mining , Rivers , Species Specificity , Tooth/anatomy & histologyABSTRACT
The nonparametric test of Kruskal-Wallis and relative risk were used to evaluate surface water quality allowed to an identification of the most degraded water bodies in Piracicaba River and Paraopeba River basins, two important hydrographic basins in Brazil. Total manganese, dissolved iron, and fecal contamination indicator were considered the most relevant parameters for the characterization of water quality in the basins. The Peixe River, in Nova Era, and Pedras Creek, in Betim, were considered the most impacted water bodies in the Piracicaba River and Paraopeba River basins, respectively. The analysis of violations and the relative risk confirmed that both basins are subject to impacts resulting from economic activities. On comparing the relative risks, the Paraopeba River basin showed a higher risk of violation for 5-day biological oxygen demand (BOD5), total manganese, total phosphorus, total suspended solids, and turbidity, while the Piracicaba River basin showed a higher risk of violation for fecal contamination indicator. The release of domestic sewage and industrial effluents, mining activities, and diffuse pollution from agriculture and pasture areas were responsible for the surface water quality deterioration in these basins. The results show the need for investment in basic sanitation, improved treatment efficiency for industrial effluents, adequate soil management, riparian vegetation preservation, and environmental education actions.
Subject(s)
Water Pollutants, Chemical/analysis , Water Quality , Brazil , Environmental Monitoring , Risk , RiversABSTRACT
On 25 January 2019, Córrego do Feijão's tailing dam at Brumadinho city (Minas Gerais, Brazil) breached, leaving over 250 people dead. At least 12 million cubic meters of ore tailing were spread into Paraopeba River and the surrounding area. To evaluate the short-term impacts of the Brumadinho dam rupture on the environment, we performed biogeochemical, microbiological and ecotoxicological analyses across 464 km of the Paraopeba River in the week following the disaster (1 February 2019) and four months latter (27-29 May 2019). Immediately after the disaster, the water turbidity was 3000 NTU, 30 times greater than the standard recommended by the Brazilian Resolution for Water Quality (CONAMA 357). Up to a 60-fold increase in iron tolerant microbial colony forming unities was observed up to 115 km downstream of the dam failure in May 2019 (compared with February 2019), suggesting changes in microbial metabolic profiles. In the second sampling (May 2019), the ecotoxicological analyses indicate higher zebrafish embryo mortality (up to ~85% embryo mortality) rates in Retiro Baixo (304 km from dam failure location). However, increased zebrafish mortality in Retiro Baixo and Três Marias reservoirs may not be related exclusively to the dam failure. The causal nexus of mortality may be associated with other factors (e.g. local sewage pollution). Our study suggests that independent monitoring programs are needed to quantify the extent of potential impacts caused by the anthropogenic use of the river and to promote the recovery of the impacted area.